Source code for camel.embeddings.together_embedding
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Optional
from openai import OpenAI
from camel.embeddings.base import BaseEmbedding
from camel.logger import get_logger
from camel.utils import api_keys_required
logger = get_logger(__name__)
[docs]
class TogetherEmbedding(BaseEmbedding[str]):
r"""Provides text embedding functionalities using Together AI's models.
Args:
model_name (str, optional): The model name to be used for text
embeddings.
(default: :obj:`togethercomputer/m2-bert-80M-8k-retrieval`)
api_key (str, optional): The API key for authenticating with the
Together service. (default: :obj:`None`)
dimensions (int, optional): The text embedding output dimensions.
(default: :obj:`None`)
Raises:
ValueError: If the model name format is invalid or if an empty input
list is provided.
RuntimeError: If the API request fails.
"""
@api_keys_required([("api_key", 'TOGETHER_API_KEY')])
def __init__(
self,
model_name: str = "togethercomputer/m2-bert-80M-8k-retrieval",
api_key: Optional[str] = None,
dimensions: Optional[int] = None,
) -> None:
if not isinstance(model_name, str) or not model_name.strip():
raise ValueError("Model name must be a non-empty string")
if dimensions is not None and dimensions <= 0:
raise ValueError("Dimensions must be a positive integer")
self.model_name = model_name
self._api_key = api_key or os.environ.get("TOGETHER_API_KEY")
self.output_dim = dimensions
# Initialize OpenAI client with Together AI configuration
self.client = OpenAI(
timeout=180,
max_retries=3,
api_key=self._api_key,
base_url="https://api.together.xyz/v1",
)
[docs]
def embed_list(
self,
objs: list[str],
**kwargs: Any,
) -> list[list[float]]:
r"""Generates embeddings for the given texts.
Args:
objs (list[str]): The texts for which to generate the embeddings.
**kwargs (Any): Extra kwargs passed to the embedding API.
Returns:
list[list[float]]: A list that represents the generated embedding
as a list of floating-point numbers.
Raises:
ValueError: If the input list is empty.
RuntimeError: If the API request fails.
"""
if not objs:
raise ValueError("Input list cannot be empty")
try:
response = self.client.embeddings.create(
input=objs,
model=self.model_name,
**kwargs,
)
# Set output dimension if not already set
if self.output_dim is None and response.data:
self.output_dim = len(response.data[0].embedding)
logger.debug(
f"Set output dimension to {self.output_dim} for model "
f"{self.model_name}"
)
return [data.embedding for data in response.data]
except Exception as e:
raise RuntimeError(
f"Failed to get embeddings from Together AI: {e}"
)
[docs]
def get_output_dim(self) -> int:
r"""Returns the output dimension of the embeddings.
Returns:
int: The dimensionality of the embedding for the current model.
Raises:
ValueError: If the embedding dimension cannot be determined.
"""
if self.output_dim is None:
logger.debug(
"Output dimension not set, "
"making test embedding to determine it"
)
# Make a test embedding to determine the dimension
self.embed_list(["test"])
if self.output_dim is None:
raise ValueError(
"Failed to determine embedding dimension for model: "
f"{self.model_name}"
)
return self.output_dim