Source code for camel.models.nemotron_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import List, Optional, Union

from openai import OpenAI

from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    api_keys_required,
)


[docs] class NemotronModel(BaseModelBackend): r"""Nemotron model API backend with OpenAI compatibility. Args: model_type (Union[ModelType, str]): Model for which a backend is created. api_key (Optional[str], optional): The API key for authenticating with the Nvidia service. (default: :obj:`None`) url (Optional[str], optional): The url to the Nvidia service. (default: :obj:`https://integrate.api.nvidia.com/v1`) Notes: Nemotron model doesn't support additional model config like OpenAI. """ @api_keys_required( [ ("api_key", "NVIDIA_API_KEY"), ] ) def __init__( self, model_type: Union[ModelType, str], api_key: Optional[str] = None, url: Optional[str] = None, ) -> None: url = url or os.environ.get( "NVIDIA_API_BASE_URL", "https://integrate.api.nvidia.com/v1" ) api_key = api_key or os.environ.get("NVIDIA_API_KEY") super().__init__(model_type, {}, api_key, url) self._client = OpenAI( timeout=180, max_retries=3, base_url=self._url, api_key=self._api_key, )
[docs] def run( self, messages: List[OpenAIMessage], ) -> ChatCompletion: r"""Runs inference of OpenAI chat completion. Args: messages (List[OpenAIMessage]): Message list. Returns: ChatCompletion. """ response = self._client.chat.completions.create( messages=messages, model=self.model_type, ) return response
@property def token_counter(self) -> BaseTokenCounter: raise NotImplementedError( "Nemotron model doesn't support token counter." )
[docs] def check_model_config(self): raise NotImplementedError( "Nemotron model doesn't support model config." )