# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Type, Union
from openai import AsyncOpenAI, OpenAI
from pydantic import BaseModel
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
BaseTokenCounter,
api_keys_required,
)
[docs]
class NemotronModel(BaseModelBackend):
r"""Nemotron model API backend with OpenAI compatibility.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created.
api_key (Optional[str], optional): The API key for authenticating with
the Nvidia service. (default: :obj:`None`)
url (Optional[str], optional): The url to the Nvidia service.
(default: :obj:`https://integrate.api.nvidia.com/v1`)
Notes:
Nemotron model doesn't support additional model config like OpenAI.
"""
@api_keys_required(
[
("api_key", "NVIDIA_API_KEY"),
]
)
def __init__(
self,
model_type: Union[ModelType, str],
api_key: Optional[str] = None,
url: Optional[str] = None,
) -> None:
url = url or os.environ.get(
"NVIDIA_API_BASE_URL", "https://integrate.api.nvidia.com/v1"
)
api_key = api_key or os.environ.get("NVIDIA_API_KEY")
super().__init__(model_type, {}, api_key, url)
self._client = OpenAI(
timeout=180,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
self._async_client = AsyncOpenAI(
timeout=180,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
async def _arun(
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> ChatCompletion:
r"""Runs inference of OpenAI chat completion asynchronously.
Args:
messages (List[OpenAIMessage]): Message list.
Returns:
ChatCompletion.
"""
response = await self._async_client.chat.completions.create(
messages=messages,
model=self.model_type,
)
return response
def _run(
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> ChatCompletion:
r"""Runs inference of OpenAI chat completion.
Args:
messages (List[OpenAIMessage]): Message list.
Returns:
ChatCompletion.
"""
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
)
return response
@property
def token_counter(self) -> BaseTokenCounter:
raise NotImplementedError(
"Nemotron model doesn't support token counter."
)
[docs]
def check_model_config(self):
raise NotImplementedError(
"Nemotron model doesn't support model config."
)