Source code for camel.models.reka_model

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union

from camel.configs import REKA_API_PARAMS, RekaConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
    api_keys_required,
    dependencies_required,
)

if TYPE_CHECKING:
    from reka.types import ChatMessage, ChatResponse

try:
    import os

    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import LLMEvent, record
    else:
        raise ImportError
except (ImportError, AttributeError):
    LLMEvent = None


[docs] class RekaModel(BaseModelBackend): r"""Reka API in a unified BaseModelBackend interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created, one of REKA_* series. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`Reka.chat.create()`. If :obj:`None`, :obj:`RekaConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the Reka service. (default: :obj:`None`) url (Optional[str], optional): The url to the Reka service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) """ @dependencies_required('reka') def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: from reka.client import Reka if model_config_dict is None: model_config_dict = RekaConfig().as_dict() api_key = api_key or os.environ.get("REKA_API_KEY") url = url or os.environ.get("REKA_API_BASE_URL") super().__init__( model_type, model_config_dict, api_key, url, token_counter ) self._client = Reka(api_key=self._api_key, base_url=self._url) def _convert_reka_to_openai_response( self, response: 'ChatResponse' ) -> ChatCompletion: r"""Converts a Reka `ChatResponse` to an OpenAI-style `ChatCompletion` response. Args: response (ChatResponse): The response object from the Reka API. Returns: ChatCompletion: An OpenAI-compatible chat completion response. """ openai_response = ChatCompletion.construct( id=response.id, choices=[ dict( message={ "role": response.responses[0].message.role, "content": response.responses[0].message.content, }, finish_reason=response.responses[0].finish_reason if response.responses[0].finish_reason else None, ) ], created=None, model=response.model, object="chat.completion", usage=response.usage, ) return openai_response def _convert_openai_to_reka_messages( self, messages: List[OpenAIMessage], ) -> List["ChatMessage"]: r"""Converts OpenAI API messages to Reka API messages. Args: messages (List[OpenAIMessage]): A list of messages in OpenAI format. Returns: List[ChatMessage]: A list of messages converted to Reka's format. """ from reka.types import ChatMessage reka_messages = [] for msg in messages: role = msg.get("role") content = str(msg.get("content")) if role == "user": reka_messages.append(ChatMessage(role="user", content=content)) elif role == "assistant": reka_messages.append( ChatMessage(role="assistant", content=content) ) elif role == "system": reka_messages.append(ChatMessage(role="user", content=content)) # Add one more assistant msg since Reka requires conversation # history must alternate between 'user' and 'assistant', # starting and ending with 'user'. reka_messages.append( ChatMessage( role="assistant", content="", ) ) else: raise ValueError(f"Unsupported message role: {role}") return reka_messages @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. # NOTE: Temporarily using `OpenAITokenCounter` Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = OpenAITokenCounter( model=ModelType.GPT_4O_MINI ) return self._token_counter
[docs] @api_keys_required("REKA_API_KEY") def run( self, messages: List[OpenAIMessage], ) -> ChatCompletion: r"""Runs inference of Mistral chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: ChatCompletion. """ reka_messages = self._convert_openai_to_reka_messages(messages) response = self._client.chat.create( messages=reka_messages, model=self.model_type, **self.model_config_dict, ) openai_response = self._convert_reka_to_openai_response(response) # Add AgentOps LLM Event tracking if LLMEvent: llm_event = LLMEvent( thread_id=openai_response.id, prompt=" ".join( [message.get("content") for message in messages] # type: ignore[misc] ), prompt_tokens=openai_response.usage.input_tokens, # type: ignore[union-attr] completion=openai_response.choices[0].message.content, completion_tokens=openai_response.usage.output_tokens, # type: ignore[union-attr] model=self.model_type, ) record(llm_event) return openai_response
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to Reka API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to Reka API. """ for param in self.model_config_dict: if param not in REKA_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into Reka model backend." )
@property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return self.model_config_dict.get('stream', False)