Source code for camel.societies.workforce.role_playing_worker

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations

import json
from typing import Dict, List, Optional

from colorama import Fore

from camel.agents.chat_agent import ChatAgent
from camel.messages.base import BaseMessage
from camel.societies import RolePlaying
from camel.societies.workforce.prompts import (
    ROLEPLAY_PROCESS_TASK_PROMPT,
    ROLEPLAY_SUMMARIZE_PROMPT,
)
from camel.societies.workforce.utils import TaskResult
from camel.societies.workforce.worker import Worker
from camel.tasks.task import Task, TaskState
from camel.utils import print_text_animated


[docs] class RolePlayingWorker(Worker): r"""A worker node that contains a role playing. Args: description (str): Description of the node. assistant_role_name (str): The role name of the assistant agent. user_role_name (str): The role name of the user agent. assistant_agent_kwargs (Optional[Dict], optional): The keyword arguments to initialize the assistant agent in the role playing, like the model name, etc. Defaults to None. user_agent_kwargs (Optional[Dict], optional): The keyword arguments to initialize the user agent in the role playing, like the model name, etc. Defaults to None. chat_turn_limit (int, optional): The maximum number of chat turns in the role playing. Defaults to 3. """ def __init__( self, description: str, assistant_role_name: str, user_role_name: str, assistant_agent_kwargs: Optional[Dict] = None, user_agent_kwargs: Optional[Dict] = None, chat_turn_limit: int = 3, ) -> None: super().__init__(description) summ_sys_msg = BaseMessage.make_assistant_message( role_name="Summarizer", content="You are a good summarizer. You will be presented with " "scenarios where an assistant and a user with specific roles " "are trying to solve a task. Your job is summarizing the result " "of the task based on the chat history.", ) self.summarize_agent = ChatAgent(summ_sys_msg) self.chat_turn_limit = chat_turn_limit self.assistant_role_name = assistant_role_name self.user_role_name = user_role_name self.assistant_agent_kwargs = assistant_agent_kwargs self.user_agent_kwargs = user_agent_kwargs async def _process_task( self, task: Task, dependencies: List[Task] ) -> TaskState: r"""Processes a task leveraging its dependencies through role-playing. This method orchestrates a role-playing session between an AI assistant and an AI user to process a given task. It initiates with a generated prompt based on the task and its dependencies, conducts a dialogue up to a specified chat turn limit, and then summarizes the dialogue to determine the task's outcome. Args: task (Task): The task object to be processed, containing necessary details like content and type. dependencies (List[Task]): A list of task objects that the current task depends on. Returns: TaskState: `TaskState.DONE` if processed successfully, otherwise `TaskState.FAILED`. """ dependency_tasks_info = self._get_dep_tasks_info(dependencies) prompt = ROLEPLAY_PROCESS_TASK_PROMPT.format( content=task.content, dependency_task_info=dependency_tasks_info, additional_info=task.additional_info, ) role_play_session = RolePlaying( assistant_role_name=self.assistant_role_name, user_role_name=self.user_role_name, assistant_agent_kwargs=self.assistant_agent_kwargs, user_agent_kwargs=self.user_agent_kwargs, task_prompt=prompt, with_task_specify=False, ) n = 0 input_msg = role_play_session.init_chat() chat_history = [] while n < self.chat_turn_limit: n += 1 assistant_response, user_response = role_play_session.step( input_msg ) if assistant_response.terminated: reason = assistant_response.info['termination_reasons'] print( f"{Fore.GREEN}AI Assistant terminated. Reason: " f"{reason}.{Fore.RESET}" ) break if user_response.terminated: reason = user_response.info['termination_reasons'] print( f"{Fore.GREEN}AI User terminated. Reason: {reason}." f"{Fore.RESET}" ) break print_text_animated( f"{Fore.BLUE}AI User:\n\n{user_response.msg.content}" f"{Fore.RESET}\n", delay=0.005, ) chat_history.append(f"AI User: {user_response.msg.content}") print_text_animated( f"{Fore.GREEN}AI Assistant:{Fore.RESET}", delay=0.005 ) for func_record in assistant_response.info['tool_calls']: print(func_record) print_text_animated( f"\n{Fore.GREEN}{assistant_response.msg.content}" f"{Fore.RESET}\n", delay=0.005, ) chat_history.append( f"AI Assistant: {assistant_response.msg.content}" ) if "CAMEL_TASK_DONE" in user_response.msg.content: break input_msg = assistant_response.msg chat_history_str = "\n".join(chat_history) prompt = ROLEPLAY_SUMMARIZE_PROMPT.format( user_role=self.user_role_name, assistant_role=self.assistant_role_name, content=task.content, chat_history=chat_history_str, additional_info=task.additional_info, ) req = BaseMessage.make_user_message( role_name="User", content=prompt, ) response = self.summarize_agent.step(req, response_format=TaskResult) result_dict = json.loads(response.msg.content) task_result = TaskResult(**result_dict) task.result = task_result.content print(f"Task result: {task.result}\n") return TaskState.DONE