Source code for camel.utils.response_format

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

from __future__ import annotations

import inspect
import json
from typing import Callable, Type, Union

from pydantic import BaseModel, create_model


[docs] def get_pydantic_model( input_data: Union[str, Type[BaseModel], Callable], ) -> Type[BaseModel]: r"""A multi-purpose function that can be used as a normal function, a class decorator, or a function decorator. Args: input_data (Union[str, type, Callable]): - If a string is provided, it should be a JSON-encoded string that will be converted into a BaseModel. - If a function is provided, it will be decorated such that its arguments are converted into a BaseModel. - If a BaseModel class is provided, it will be returned directly. Returns: Type[BaseModel]: The BaseModel class that will be used to structure the input data. """ if isinstance(input_data, str): data_dict = json.loads(input_data) TemporaryModel = create_model( # type: ignore[call-overload] "TemporaryModel", **{key: (type(value), None) for key, value in data_dict.items()}, ) return TemporaryModel(**data_dict).__class__ elif callable(input_data): WrapperClass = create_model( # type: ignore[call-overload] f"{input_data.__name__.capitalize()}Model", **{ name: (param.annotation, ...) for name, param in inspect.signature( input_data ).parameters.items() }, ) return WrapperClass if issubclass(input_data, BaseModel): return input_data raise ValueError("Invalid input data provided.")