Source code for camel.agents.critic_agent

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import random
import warnings
from typing import Any, Dict, Optional, Sequence

from colorama import Fore

from camel.agents.chat_agent import ChatAgent
from camel.memories import AgentMemory
from camel.messages import BaseMessage
from camel.models import BaseModelBackend
from camel.responses import ChatAgentResponse
from camel.utils import get_first_int, print_text_animated

# AgentOps decorator setting
try:
    import os

    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import track_agent
    else:
        raise ImportError
except (ImportError, AttributeError):
    from camel.utils import track_agent


[docs] @track_agent(name="CriticAgent") class CriticAgent(ChatAgent): r"""A class for the critic agent that assists in selecting an option. Args: system_message (BaseMessage): The system message for the critic agent. model (BaseModelBackend, optional): The model backend to use for generating responses. (default: :obj:`OpenAIModel` with `GPT_4O_MINI`) message_window_size (int, optional): The maximum number of previous messages to include in the context window. If `None`, no windowing is performed. (default: :obj:`6`) retry_attempts (int, optional): The number of retry attempts if the critic fails to return a valid option. (default: :obj:`2`) verbose (bool, optional): Whether to print the critic's messages. logger_color (Any): The color of the menu options displayed to the user. (default: :obj:`Fore.MAGENTA`) """ def __init__( self, system_message: BaseMessage, model: Optional[BaseModelBackend] = None, memory: Optional[AgentMemory] = None, message_window_size: int = 6, retry_attempts: int = 2, verbose: bool = False, logger_color: Any = Fore.MAGENTA, ) -> None: super().__init__( system_message, model=model, memory=memory, message_window_size=message_window_size, ) self.options_dict: Dict[str, str] = dict() self.retry_attempts = retry_attempts self.verbose = verbose self.logger_color = logger_color
[docs] def flatten_options(self, messages: Sequence[BaseMessage]) -> str: r"""Flattens the options to the critic. Args: messages (Sequence[BaseMessage]): A list of `BaseMessage` objects. Returns: str: A string containing the flattened options to the critic. """ options = [message.content for message in messages] flatten_options = ( f"> Proposals from " f"{messages[0].role_name} ({messages[0].role_type}). " "Please choose an option:\n" ) for index, option in enumerate(options): flatten_options += f"Option {index + 1}:\n{option}\n\n" self.options_dict[str(index + 1)] = option format = ( f"Please first enter your choice ([1-{len(self.options_dict)}]) " "and then your explanation and comparison: " ) return flatten_options + format
[docs] def get_option(self, input_message: BaseMessage) -> str: r"""Gets the option selected by the critic. Args: input_message (BaseMessage): A `BaseMessage` object representing the input message. Returns: str: The option selected by the critic. """ # TODO: Add support for editing options by the critic. msg_content = input_message.content i = 0 while i < self.retry_attempts: critic_response = self.step(input_message) if critic_response.msgs is None or len(critic_response.msgs) == 0: raise RuntimeError("Got None critic messages.") if critic_response.terminated: raise RuntimeError("Critic step failed.") critic_msg = critic_response.msg if self.verbose: print_text_animated( self.logger_color + "\n> Critic response: " f"\x1b[3m{critic_msg.content}\x1b[0m\n" ) choice = self.parse_critic(critic_msg) if choice in self.options_dict: return self.options_dict[choice] else: input_message = BaseMessage( role_name=input_message.role_name, role_type=input_message.role_type, meta_dict=input_message.meta_dict, content="> Invalid choice. Please choose again.\n" + msg_content, ) i += 1 warnings.warn( "Critic failed to get a valid option. " f"After {self.retry_attempts} attempts. " "Returning a random option." ) return random.choice(list(self.options_dict.values()))
[docs] def parse_critic(self, critic_msg: BaseMessage) -> Optional[str]: r"""Parses the critic's message and extracts the choice. Args: critic_msg (BaseMessage): A `BaseMessage` object representing the critic's response. Returns: Optional[str]: The critic's choice as a string, or None if the message could not be parsed. """ choice = str(get_first_int(critic_msg.content)) return choice
[docs] def reduce_step( self, input_messages: Sequence[BaseMessage], ) -> ChatAgentResponse: r"""Performs one step of the conversation by flattening options to the critic, getting the option, and parsing the choice. Args: input_messages (Sequence[BaseMessage]): A list of BaseMessage objects. Returns: ChatAgentResponse: A `ChatAgentResponse` object includes the critic's choice. """ meta_chat_message = BaseMessage( role_name=input_messages[0].role_name, role_type=input_messages[0].role_type, meta_dict=input_messages[0].meta_dict, content="", ) flatten_options = self.flatten_options(input_messages) if self.verbose: print_text_animated( self.logger_color + f"\x1b[3m{flatten_options}\x1b[0m\n" ) input_msg = meta_chat_message.create_new_instance(flatten_options) option = self.get_option(input_msg) output_msg = meta_chat_message.create_new_instance(option) # TODO: The return `info` can be improved. return ChatAgentResponse( msgs=[output_msg], terminated=False, info={}, )