Source code for camel.agents.embodied_agent
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, List, Optional
from colorama import Fore
from camel.agents.chat_agent import ChatAgent
from camel.agents.tool_agents.base import BaseToolAgent
from camel.interpreters import (
BaseInterpreter,
InternalPythonInterpreter,
SubprocessInterpreter,
)
from camel.messages import BaseMessage
from camel.models import BaseModelBackend
from camel.responses import ChatAgentResponse
from camel.utils import print_text_animated
# AgentOps decorator setting
try:
import os
if os.getenv("AGENTOPS_API_KEY") is not None:
from agentops import track_agent
else:
raise ImportError
except (ImportError, AttributeError):
from camel.utils import track_agent
[docs]
@track_agent(name="EmbodiedAgent")
class EmbodiedAgent(ChatAgent):
r"""Class for managing conversations of CAMEL Embodied Agents.
Args:
system_message (BaseMessage): The system message for the chat agent.
model (BaseModelBackend, optional): The model backend to use for
generating responses. (default: :obj:`OpenAIModel` with
`GPT_4O_MINI`)
message_window_size (int, optional): The maximum number of previous
messages to include in the context window. If `None`, no windowing
is performed. (default: :obj:`None`)
tool_agents (List[BaseToolAgent], optional): The tools agents to use in
the embodied agent. (default: :obj:`None`)
code_interpreter (BaseInterpreter, optional): The code interpreter to
execute codes. If `code_interpreter` and `tool_agent` are both
`None`, default to `SubProcessInterpreter`. If `code_interpreter`
is `None` and `tool_agents` is not `None`, default to
`InternalPythonInterpreter`. (default: :obj:`None`)
verbose (bool, optional): Whether to print the critic's messages.
logger_color (Any): The color of the logger displayed to the user.
(default: :obj:`Fore.MAGENTA`)
"""
def __init__(
self,
system_message: BaseMessage,
model: Optional[BaseModelBackend] = None,
message_window_size: Optional[int] = None,
tool_agents: Optional[List[BaseToolAgent]] = None,
code_interpreter: Optional[BaseInterpreter] = None,
verbose: bool = False,
logger_color: Any = Fore.MAGENTA,
) -> None:
self.tool_agents = tool_agents
self.code_interpreter: BaseInterpreter
if code_interpreter is not None:
self.code_interpreter = code_interpreter
elif self.tool_agents:
self.code_interpreter = InternalPythonInterpreter()
else:
self.code_interpreter = SubprocessInterpreter()
if self.tool_agents:
system_message = self._set_tool_agents(system_message)
self.verbose = verbose
self.logger_color = logger_color
super().__init__(
system_message=system_message,
model=model,
message_window_size=message_window_size,
)
def _set_tool_agents(self, system_message: BaseMessage) -> BaseMessage:
action_space_prompt = self._get_tool_agents_prompt()
result_message = system_message.create_new_instance(
content=system_message.content.format(
action_space=action_space_prompt
)
)
if self.tool_agents is not None:
self.code_interpreter.update_action_space(
{tool.name: tool for tool in self.tool_agents}
)
return result_message
def _get_tool_agents_prompt(self) -> str:
r"""Returns the action space prompt.
Returns:
str: The action space prompt.
"""
if self.tool_agents is not None:
return "\n".join(
[
f"*** {tool.name} ***:\n {tool.description}"
for tool in self.tool_agents
]
)
else:
return ""
# ruff: noqa: E501
[docs]
def step(self, input_message: BaseMessage) -> ChatAgentResponse: # type: ignore[override]
r"""Performs a step in the conversation.
Args:
input_message (BaseMessage): The input message.
Returns:
ChatAgentResponse: A struct containing the output messages,
a boolean indicating whether the chat session has terminated,
and information about the chat session.
"""
response = super().step(input_message)
if response.msgs is None or len(response.msgs) == 0:
raise RuntimeError("Got None output messages.")
if response.terminated:
raise RuntimeError(f"{self.__class__.__name__} step failed.")
# NOTE: Only single output messages are supported
explanations, codes = response.msg.extract_text_and_code_prompts()
if self.verbose:
for explanation, code in zip(explanations, codes):
print_text_animated(
self.logger_color + f"> Explanation:\n{explanation}"
)
print_text_animated(self.logger_color + f"> Code:\n{code}")
if len(explanations) > len(codes):
print_text_animated(
self.logger_color + f"> Explanation:\n{explanations[-1]}"
)
content = response.msg.content
if codes is not None:
try:
content = "\n> Executed Results:\n"
for block_idx, code in enumerate(codes):
executed_output = self.code_interpreter.run(
code, code.code_type
)
content += (
f"Executing code block {block_idx}: {{\n"
+ executed_output
+ "}\n"
)
except InterruptedError as e:
content = (
f"\n> Running code fail: {e}\n"
"Please regenerate the code."
)
# TODO: Handle errors
content = input_message.content + f"\n> Embodied Actions:\n{content}"
message = BaseMessage(
input_message.role_name,
input_message.role_type,
input_message.meta_dict,
content,
)
return ChatAgentResponse(
msgs=[message],
terminated=response.terminated,
info=response.info,
)