# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import logging
import os
import random
import re
import string
import uuid
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from tqdm import tqdm
from camel.agents import ChatAgent
from camel.benchmarks.base import BaseBenchmark
from camel.messages import BaseMessage
from camel.retrievers.auto_retriever import AutoRetriever
logger = logging.getLogger(__name__)
[docs]
class RetrieverProtocol(Protocol):
r"""Protocol for the retriever class. Any retriever class implementing
this protocol can be used in the benchmark class.
"""
[docs]
def retrieve(
self, query: str, contents: List[str], **kwargs: Dict[str, Any]
) -> Dict[str, Any]:
r"""Retrieve the relevant content for the query.
Args:
query (str): The query to retrieve the content for.
contents (List[str]): The list of contents to search in.
**kwargs (Dict[str, Any]): Additional keyword arguments.
Returns:
Dict[str, Any]: The relevant content for the query.
"""
...
[docs]
def reset(self, **kwargs) -> bool:
r"""Reset the retriever.
Some benchmarks may require resetting the retriever
after each query.
Args:
**kwargs: Additional keyword arguments.
Returns:
bool: True if the reset was successful, False otherwise.
"""
...
[docs]
class DefaultGAIARetriever(AutoRetriever):
r"""Default retriever for the GAIA benchmark.
This retriever uses AutoRetriever in camel to retrieve the content based on
the query.
"""
[docs]
def retrieve(
self, query: str, contents: List[str], **kwargs: Any
) -> Dict[str, Any]:
r"""Retrieve the content based on the query.
Args:
query (str): The query to search for.
contents (List[str]): The list of contents to search from.
**kwargs (Any): The keyword arguments to pass to the
retriever.
Returns:
Dict[str, Any]: The retrieved content.
"""
return self.run_vector_retriever(query, contents, **kwargs) # type: ignore[arg-type]
[docs]
def reset(self, **kwargs: Any) -> bool:
r"""Reset the retriever.
Args:
**kwargs (Any): The keyword arguments to pass to the
retriever.
Returns:
bool: Whether the reset was successful.
"""
path = Path(self.vector_storage_local_path or os.getcwd())
task_id = str(kwargs.get("task_id", uuid.uuid4()))
retriever_dir = path / task_id
if not retriever_dir.exists():
try:
retriever_dir.mkdir(parents=True)
except Exception as e:
logger.error(
"Error in creating directory: " + f"{retriever_dir}: {e!s}"
)
return False
self.vector_storage_local_path = str(retriever_dir)
return True
[docs]
class GAIABenchmark(BaseBenchmark):
r"""GAIA Benchmark adapted from `"GAIA: a benchmark for General AI
Assistants"
<https://huggingface.co/datasets/gaia-benchmark/GAIA>`_.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
retriever (Optional[RetrieverProtocol]): The retriever to use.
(default: :obj:`None`)
processes (int, optional): The number of processes to use.
(default: :obj:`1`)
"""
def __init__(
self,
data_dir: str,
save_to: str,
retriever: Optional[RetrieverProtocol] = None,
processes: int = 1,
):
r"""Initialize the GAIA benchmark.
Args:
data_dir (str): The directory to save the data.
save_to (str): The file to save the results.
retriever (Optional[RetrieverProtocol], optional): The retriever to
use. (default: :obj:`None`)
processes (int, optional): The number of processes to use for
parallel processing. (default: :obj:`1`)
"""
super().__init__("gaia", data_dir, save_to, processes)
self.retriever = retriever or DefaultGAIARetriever()
[docs]
def download(self):
r"""Download the GAIA dataset."""
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="gaia-benchmark/GAIA",
repo_type="dataset",
local_dir=self.data_dir,
local_dir_use_symlinks=True,
)
[docs]
def load(self, force_download=False):
r"""Load the GAIA dataset.
Args:
force_download (bool, optional): Whether to
force download the data.
"""
if force_download:
logger.info("Force downloading data.")
self.download()
# Define validation and test directories
valid_dir = self.data_dir / "2023/validation"
test_dir = self.data_dir / "2023/test"
# Check if directories exist; if not, download the data
if not valid_dir.is_dir() or not test_dir.is_dir():
logger.info("Data not found. Downloading data.")
self.download()
# Load metadata for both validation and test datasets
for path, label in zip([valid_dir, test_dir], ["valid", "test"]):
self._data[label] = []
with open(path / "metadata.jsonl", "r") as f:
lines = f.readlines()
for line in lines:
data = json.loads(line)
if data["task_id"] == "0-0-0-0-0":
continue
if data["file_name"]:
data["file_name"] = path / data["file_name"]
self._data[label].append(data)
return self
@property
def train(self):
r"""Get the training set."""
raise NotImplementedError("GAIA does not have a training set.")
[docs]
def run( # type: ignore[override]
self,
agent: ChatAgent,
on: Literal["train", "valid", "test"],
level: Union[int, List[int], Literal["all"]],
randomize: bool = False,
subset: Optional[int] = None,
) -> Dict[str, Any]:
r"""Run the benchmark.
Args:
agent (ChatAgent): The agent to run the benchmark.
on (Literal["valid", "test"]): The set to run the benchmark.
level (Union[int, List[int], Literal["all"]]): The level to run
the benchmark.
randomize (bool, optional): Whether to randomize the data.
(default: :obj:`False`)
subset (Optional[int], optional): The subset of data to run.
(default: :obj:`None`)
Returns:
Dict[str, Any]: The results of the benchmark.
"""
# Validate inputs
if on not in ["valid", "test"]:
raise ValueError(
f"Invalid value for `on`: {on}, expected 'valid' or 'test'."
)
levels = (
[1, 2, 3]
if level == "all"
else [level]
if isinstance(level, int)
else level
)
if not all(
isinstance(level, int) and level in [1, 2, 3] for level in levels
):
raise ValueError(
f"Invalid value for `level`: {level}, expected 1, 2, 3 "
"or 'all'."
)
logger.info(f"Running benchmark on {on} set at levels {levels}.")
datas = [data for data in self._data[on] if data["Level"] in levels]
# Shuffle and subset data if necessary
if randomize:
random.shuffle(datas)
if subset:
datas = datas[:subset]
logger.info(f"Number of tasks: {len(datas)}")
# Initialize results storage
self._results = []
# Process tasks
with open(self.save_to, "w") as f:
for task in tqdm(datas, desc="Running"):
if not self._prepare_task(task):
continue
try:
result = agent.step(self._create_user_message(task))
self._process_result(agent, task, result, f)
except Exception as e:
self._handle_error(task, e, f)
finally:
agent.reset()
return self._generate_summary()
def _prepare_task(self, task: Dict[str, Any]) -> bool:
r"""Prepare the task by validating and enriching its data."""
if task["file_name"]:
file_path = Path(task["file_name"])
if not file_path.exists():
logger.info(
f"Skipping task because file not found: {file_path}"
)
return False
if file_path.suffix in [".pdf", ".docx", ".doc", ".txt"]:
if not self.retriever.reset(task_id=task["task_id"]):
return False
retrieved_info = self.retriever.retrieve(
query=task["Question"], contents=[task["file_name"]]
)
retrieved_content = [
item["text"]
for item in retrieved_info.get("Retrieved Context", [])
]
if retrieved_content:
task["Question"] += "\n" + "\n".join(retrieved_content)
else:
logger.info(
f"Skipping task due to unsupported file "
f"format: {file_path.suffix}"
)
return False
return True
def _create_user_message(self, task: Dict[str, Any]) -> BaseMessage:
r"""Create a user message from a task."""
return BaseMessage.make_user_message(
role_name="User",
content=task["Question"],
)
def _process_result(
self,
agent: ChatAgent,
task: Dict[str, Any],
result: Any,
file_obj: Any,
) -> None:
r"""Process and store the result of a task."""
model_answer = self.get_final_answer(result.msgs[0].content)
final_answer = task["Final answer"]
score = self.question_scorer(model_answer, final_answer)
tool_calls = result.info.get("tool_calls", [])
result_data = {
"task_id": task["task_id"],
"question": task["Question"],
"level": task["Level"],
"model_answer": model_answer,
"ground_truth": final_answer,
"tool_calls": [tool.model_dump() for tool in tool_calls],
"error": None,
"score": int(score),
"history": agent.memory.get_context(),
}
self._results.append(result_data)
file_obj.write(
json.dumps(result_data, indent=2) + "\n", ensure_ascii=False
)
file_obj.flush()
def _handle_error(
self, task: Dict[str, Any], error: Exception, file_obj: Any
) -> None:
r"""Handle errors encountered during task processing."""
logger.warning(f"Error processing task {task['task_id']}: {error}")
error_data = {
"task_id": task["task_id"],
"question": task["Question"],
"level": task["Level"],
"model_answer": "ERROR",
"ground_truth": task["Final answer"],
"tool_calls": [],
"error": str(error),
"score": 0,
}
self._results.append(error_data)
file_obj.write(
json.dumps(error_data, indent=2) + "\n", ensure_ascii=False
)
file_obj.flush()
def _generate_summary(self) -> Dict[str, Any]:
r"""Generate and return a summary of the benchmark results."""
return {
"total": len(self._results),
"correct": sum(result["score"] for result in self._results),
"results": self._results,
}
[docs]
def question_scorer(self, model_answer: str, ground_truth: str) -> bool:
r"""Scorer for the GAIA benchmark.
https://huggingface.co/spaces/gaia-benchmark/leaderboard/blob/main/
scorer.py
Args:
model_answer (str): The model answer.
ground_truth (str): The ground truth answer.
Returns:
bool: The score of the model
"""
def is_float(element: Any) -> bool:
try:
float(element)
return True
except ValueError:
return False
if is_float(ground_truth):
logger.info(f"Evaluating {model_answer} as a number.")
normalized_answer = self.normalize_number_str(model_answer)
return normalized_answer == float(ground_truth)
elif any(char in ground_truth for char in [",", ";"]):
logger.info(
f"Evaluating {model_answer} as a comma separated list."
)
gt_elems = self.split_string(ground_truth)
ma_elems = self.split_string(model_answer)
if len(gt_elems) != len(ma_elems):
logger.warning(
"Answer lists have different lengths, returning False.",
UserWarning,
)
return False
comparisons = []
for ma_elem, gt_elem in zip(ma_elems, gt_elems):
if is_float(gt_elem):
normalized_ma_elem = self.normalize_number_str(ma_elem)
comparisons.append(normalized_ma_elem == float(gt_elem))
else:
ma_elem = self.normalize_str(ma_elem, remove_punct=False)
gt_elem = self.normalize_str(gt_elem, remove_punct=False)
comparisons.append(ma_elem == gt_elem)
return all(comparisons)
else:
logger.info(f"Evaluating {model_answer} as a string.")
ma_elem = self.normalize_str(model_answer)
gt_elem = self.normalize_str(ground_truth)
return ma_elem == gt_elem
[docs]
def normalize_number_str(self, number_str: str) -> float:
for char in ["$", "%", ","]:
number_str = number_str.replace(char, "")
try:
return float(number_str)
except ValueError:
logger.error(
f"String {number_str} cannot be normalized to number str."
)
return float("inf")
[docs]
def split_string(
self, s: str, char_list: Optional[List[str]] = None
) -> list[str]:
r"""Split a string based on a list of characters.
Args:
s (str): The string to split.
char_list (Optional[List[str]], optional): T
he list of characters to split on.
(default: :obj:`None`)
"""
if char_list is None:
char_list = [",", ";"]
pattern = f"[{''.join(char_list)}]"
return re.split(pattern, s)
[docs]
def normalize_str(self, input_str, remove_punct=True) -> str:
r"""Normalize a string.
Args:
input_str: The input string to normalize.
remove_punct: Whether to remove punctuation.
Returns:
str: The normalized string.
"""
no_spaces = re.sub(r"\s", "", input_str)
if remove_punct:
translator = str.maketrans("", "", string.punctuation)
return no_spaces.lower().translate(translator)
else:
return no_spaces.lower()
[docs]
def get_final_answer(self, content: str) -> str:
r"""Get the final answer from the content.
Args:
content (str): The content to extract the final answer from.
Returns:
str: The final answer.
"""
final_answer_index = content.find("FINAL ANSWER")
if final_answer_index == -1:
return "FINAL ANSWER not found"
start_index = final_answer_index + len("FINAL ANSWER: ")
final_answer_content = content[start_index:].strip()
return final_answer_content