Source code for camel.benchmarks.nexus

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

import ast
import json
import logging
import os
import random
import textwrap
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

import pandas as pd
from datasets import load_dataset
from tqdm import tqdm

from camel.agents import ChatAgent
from camel.benchmarks.base import BaseBenchmark

logger = logging.getLogger(__name__)


# Define the data class
[docs] @dataclass class NexusSample: r"""Nexus benchmark dataset sample.""" input: str output: str
[docs] @dataclass class NexusTool: r"""Nexus benchmark tool""" function_calls: str descriptions: str
dataset_mapping = { "NVDLibrary": "Nexusflow/NVDLibraryBenchmark", "VirusTotal": "Nexusflow/VirusTotalBenchmark", "PlacesAPI": "Nexusflow/PlacesAPIBenchmark", "ClimateAPI": "Nexusflow/ClimateAPIBenchmark", "OTX": "Nexusflow/OTXAPIBenchmark", "VirusTotal-NestedCalls": "Nexusflow/vt_multiapi", "VirusTotal-ParallelCalls": "Nexusflow/vt_multiapi", "NVDLibrary-NestedCalls": "Nexusflow/CVECPEAPIBenchmark", } TOOL_CALLING_PROMPT = """ You are given multiple functions and a user query. Please proceed with generating a function call for the function \ with the proper arguments that best answers the given prompt. Respond with nothing but the function call ONLY, such that I can \ directly execute your function call without any post processing \ necessary from my end. Do not use variables. If there are more than two function calls, separate them with a semicolon (;). {tools} Question: {input} """
[docs] class NexusBenchmark(BaseBenchmark): r"""Nexus Function Calling Benchmark adapted from `NexusRaven V2 Function Calling Benchmark` <https://huggingface.co/collections/Nexusflow/nexusraven-v2-function-calling-benchmark-657a597fb84dbe7a09ebfc3e>. Args: data_dir (str): The directory to save the data. save_to (str): The file to save the results. processes (int, optional): The number of processes to use. (default: :obj:`1`) """ def __init__( self, data_dir: str, save_to: str, processes: int = 1, ): r"""Initialize the Nexus Function Calling benchmark. Args: data_dir (str): The directory to save the data. save_to (str): The file to save the results. processes (int, optional): The number of processes to use for parallel processing. (default: :obj:`1`) """ super().__init__("nexus", data_dir, save_to, processes) self._data: List[NexusSample] = [] # type: ignore[assignment]
[docs] def download(self): r"""Download the Nexus Functional Calling Benchmark dataset.""" from huggingface_hub import snapshot_download for dataset_name, repo_id in dataset_mapping.items(): local_dir = self.data_dir / dataset_name snapshot_download( repo_id=repo_id, repo_type="dataset", local_dir=local_dir, local_dir_use_symlinks=True, )
[docs] def load(self, dataset_name: str, force_download: bool = False): # type: ignore[override] r"""Load the Nexus Benchmark dataset. Args: dataset_name (str): Name of the specific dataset to be loaded. force_download (bool): Whether to force download the data. """ def _load_csv_data(dataset_dir: Path) -> List: r"""Load datasets from CSV files.""" dataset = [] for file_name in os.listdir(dataset_dir): file_path = dataset_dir / file_name if file_name.endswith(".csv"): data = pd.read_csv(file_path) for _, sample in data.iterrows(): dataset.append( NexusSample( sample["Input"], "".join(sample["Output"]) ) ) continue logger.warning(f"Skipping unsupported file: {file_name}") return dataset def _load_parquet_data(data_dir: Path, dataset_name: str) -> List: r"""Load datasets from Parquet files.""" dataset = [] if not data_dir.exists(): raise FileNotFoundError( f"Data directory '{data_dir}' does not exist." ) for file_name in os.listdir(data_dir): file_path = data_dir / file_name if file_name.endswith(".parquet"): data = pd.read_parquet(file_path) dataset.extend(_process_parquet_data(data, dataset_name)) continue logger.warning(f"Skipping unsupported file: {file_name}") return dataset def _process_parquet_data( data: pd.DataFrame, dataset_name: str ) -> List: r"""Process data from Parquet files based on dataset name.""" dataset: List = [] dataset_handlers = { "NVDLibrary": _process_nvdlibrary, "VirusTotal": _process_simple, "PlacesAPI": _process_simple, "ClimateAPI": _process_simple, "OTX": _process_simple, "VirusTotal-NestedCalls": _process_nested_calls, "VirusTotal-ParallelCalls": _process_parallel_calls, } if dataset_name not in dataset_handlers: logger.warning( f"No specific handler for dataset: {dataset_name}" ) return dataset handler = dataset_handlers[dataset_name] for _, sample in data.iterrows(): processed_sample = handler(sample) if processed_sample: dataset.append(processed_sample) return dataset def _process_nvdlibrary(sample) -> NexusSample: r"""Process samples for the NVDLibrary dataset.""" return NexusSample( sample["Input"], sample["Output"].replace("r = nvdlib.", "") ) def _process_simple(sample) -> NexusSample: r"""Process samples for simple datasets (e.g., VirusTotal).""" return NexusSample(sample["Input"], sample["Output"]) def _process_nested_calls(sample) -> Union[NexusSample, None]: r"""Process samples for VirusTotal-NestedCalls dataset.""" if len(sample["fncall"]) == 1: return NexusSample( sample["generated_question"], "".join(sample["fncall"]) ) return None def _process_parallel_calls(sample) -> Union[NexusSample, None]: r"""Process samples for VirusTotal-ParallelCalls dataset.""" if len(sample["fncall"]) > 1: return NexusSample( sample["generated_question"], "; ".join(sample["fncall"]) ) return None if force_download: logger.info("Force downloading data.") self.download() # Validate dataset name if dataset_name not in dataset_mapping: available_datasets = list(dataset_mapping.keys()) raise ValueError( f"Dataset '{dataset_name}' is not recognized. " f"Available datasets: {available_datasets}" ) # Get the dataset directory dataset_dir = self.data_dir / dataset_name if not dataset_dir.exists(): raise FileNotFoundError( f"The dataset directory for '{dataset_name}' \ does not exist at {dataset_dir}. " "Please download it first." ) # Load the dataset if dataset_name == "NVDLibrary-NestedCalls": self._data = _load_csv_data(dataset_dir) else: self._data = _load_parquet_data(dataset_dir / "data", dataset_name)
@property def train(self): r"""Get the training set.""" raise NotImplementedError( "Nexus Functional Calling has only a single 'train' set." )
[docs] def run( # type: ignore[override, return] self, agent: ChatAgent, task: Literal[ "NVDLibrary", "VirusTotal", "OTX", "PlacesAPI", "ClimateAPI", "VirusTotal-ParallelCalls", "VirusTotal-NestedCalls", "NVDLibrary-NestedCalls", ], randomize: bool = False, subset: Optional[int] = None, ) -> Dict[str, Any]: r"""Run the benchmark. Args: agent (ChatAgent): The agent to run the benchmark. task (Literal["NVDLibrary", "VirusTotal", "OTX", "PlacesAPI", "ClimateAPI", "VirusTotal-ParallelCalls", "VirusTotal-NestedCalls", "NVDLibrary-NestedCalls"]): The task to run the benchmark. randomize (bool, optional): Whether to randomize the data. (default: :obj:`False`) subset (Optional[int], optional): The subset of data to run. (default: :obj:`None`) Returns: Dict[str, Any]: The results of the benchmark. """ if task not in dataset_mapping: raise ValueError(f"Invalid value for dataset: {task}.") logger.info(f"Running Nexus Function Calling benchmark on {task}.") self.load(task) datas = self._data # Shuffle and subset data if necessary if randomize: random.shuffle(datas) if subset: datas = datas[:subset] logger.info(f"Number of tasks: {len(datas)}") # Initialize results storage self._results = [] # Process samples tools = construct_tool_descriptions(task) with open(self.save_to, "w") as f: for sample in tqdm(datas, desc="Running"): prompt = construct_prompt(input=sample.input, tools=tools) ground_truth_call = sample.output try: # Generate response response = agent.step(prompt) agent_call = response.msgs[0].content # Evaluate response if agent_call: result = compare_function_calls( agent_call=agent_call, ground_truth_call=ground_truth_call, ) self._results.append( { "input": sample.input, "agent_call": agent_call, "ground_truth_call": ground_truth_call, "result": result, "error": None, } ) except Exception as e: logger.warning(f"Error in processing task: {sample.input}") self._results.append( { "input": sample.input, "agent_call": None, "ground_truth_call": ground_truth_call, "result": 0, "error": str(e), } ) agent.reset() json_str = json.dumps( self._results[-1], indent=2, ensure_ascii=False ) f.write(json_str + "\n") f.flush() total = len(self._results) correct = sum(r["result"] for r in self._results) return { "total": total, "correct": correct, "accuracy": correct / total, }
# Utility functions
[docs] def construct_tool_descriptions(dataset_name: str) -> str: r"""Construct tool descriptions from function definitions and descriptions.""" tool_dataset_mapping = { "NVDLibrary": "CVECPE", "VirusTotal": "VirusTotal", "PlacesAPI": "Places", "ClimateAPI": "Climate", "OTX": "OTX", "VirusTotal-NestedCalls": "VT_Multi (Nested)", "VirusTotal-ParallelCalls": "VT_Multi (Parallel)", "NVDLibrary-NestedCalls": "CVECPE_Multi (Nested)", } if dataset_name not in tool_dataset_mapping: raise ValueError( f"Dataset '{dataset_name}' is not recognized. " f"Available datasets: {list(dataset_mapping.keys())}" ) # Load the dataset based on the dataset name dataset = load_dataset( "Nexusflow/Function_Call_Definitions", name=tool_dataset_mapping[dataset_name], )["train"] # Construct tool descriptions tools = [ NexusTool(tool["function_calls"], tool["descriptions"]) for tool in dataset ] # Generate the tool prompt tool_prompt = "".join( f"Function:\ndef {tool.function_calls}:\n" + "\"\"\"\n" + f"{tool.descriptions}\n" + "\"\"\"\n" for tool in tools ) return tool_prompt
[docs] def construct_prompt(input: str, tools: str) -> str: r"Construct prompt from tools and input." return TOOL_CALLING_PROMPT.format(tools=tools, input=input)
# Functions for function call evaluation
[docs] def parse_function_call( call: str, ) -> Tuple[Optional[str], Optional[List[Any]], Optional[Dict[str, Any]]]: r"""Parse a function call string to extract the function name, positional arguments, and keyword arguments, including nested function calls. Args: call (str): A string in the format `func(arg1, arg2, kwarg=value)`. Returns: tuple: (function_name (str), positional_args (list), keyword_args (dict)) or (None, None, None). """ def preprocess_input(call: str) -> str: r"""Remove formatting like code blocks and whitespace.""" if call.strip().startswith("```python"): call = call.strip().removeprefix("```python").removesuffix("```") return textwrap.dedent(call).strip() def evaluate_arg(arg): r"""Recursively evaluate arguments, including nested calls.""" if isinstance(arg, ast.Call): # Recursively parse nested calls func_name, args, kwargs = parse_function_call(ast.unparse(arg)) return func_name, args, kwargs elif isinstance( arg, ast.Constant ): # Handle literals like numbers, strings, etc. return arg.value elif isinstance(arg, ast.List): # Handle list literals return [evaluate_arg(el) for el in arg.elts] elif isinstance(arg, ast.Dict): # Handle dictionary literals return { evaluate_arg(k): evaluate_arg(v) for k, v in zip(arg.keys, arg.values) } elif isinstance(arg, ast.Tuple): # Handle tuple literals return tuple(evaluate_arg(el) for el in arg.elts) else: return ast.literal_eval(arg) # Safely evaluate other types call = preprocess_input(call) parsed_calls = [] try: # Parse the string into an AST parsed_calls = call.split(";") for single_call in parsed_calls: tree = ast.parse(single_call, mode='eval') # Ensure it's a function call if isinstance(tree.body, ast.Call): # Extract function name if isinstance( tree.body.func, ast.Name ): # Simple function call func_name = tree.body.func.id elif isinstance( tree.body.func, ast.Attribute ): # Attribute function call func_name = ( f"{tree.body.func.value.id}.{tree.body.func.attr}" # type: ignore[attr-defined] ) else: raise ValueError(f"Unsupported function call: {call}") # Extract positional arguments args = [evaluate_arg(arg) for arg in tree.body.args] # Extract keyword arguments kwargs: Dict[str, Any] = { kw.arg: evaluate_arg(kw.value) for kw in tree.body.keywords if kw.arg is not None } logger.info("Valid call.") return func_name, args, kwargs else: raise ValueError(f"Not a valid function call: {call}") except Exception as e: logger.info(f"Error parsing call: {call}, {e}") return None, None, None
[docs] def compare_function_calls(agent_call: str, ground_truth_call: str) -> bool: r"""Compare the function name and arguments of agent_call and ground_truth_call. Args: agent_call (str): Function call by agent. ground_truth_call (str): Ground truth function call. Returns: - `True` if the function names and arguments match. - `False` otherwise. """ # Parse both calls agent_parsed = parse_function_call(agent_call) gt_parsed = parse_function_call(ground_truth_call) if agent_parsed and gt_parsed: return agent_parsed == gt_parsed else: return False