Source code for camel.configs.litellm_config

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations

from typing import List, Optional, Union

from camel.configs.base_config import BaseConfig


[docs] class LiteLLMConfig(BaseConfig): r"""Defines the parameters for generating chat completions using the LiteLLM API. Args: timeout (Optional[Union[float, str]], optional): Request timeout. (default: None) temperature (Optional[float], optional): Temperature parameter for controlling randomness. (default: None) top_p (Optional[float], optional): Top-p parameter for nucleus sampling. (default: None) n (Optional[int], optional): Number of completions to generate. (default: None) stream (Optional[bool], optional): Whether to return a streaming response. (default: None) stream_options (Optional[dict], optional): Options for the streaming response. (default: None) stop (Optional[Union[str, List[str]]], optional): Sequences where the API will stop generating further tokens. (default: None) max_tokens (Optional[int], optional): Maximum number of tokens to generate. (default: None) presence_penalty (Optional[float], optional): Penalize new tokens based on their existence in the text so far. (default: None) frequency_penalty (Optional[float], optional): Penalize new tokens based on their frequency in the text so far. (default: None) logit_bias (Optional[dict], optional): Modify the probability of specific tokens appearing in the completion. (default: None) user (Optional[str], optional): A unique identifier representing the end-user. (default: None) response_format (Optional[dict], optional): Response format parameters. (default: None) seed (Optional[int], optional): Random seed. (default: None) tools (Optional[List], optional): List of tools. (default: None) tool_choice (Optional[Union[str, dict]], optional): Tool choice parameters. (default: None) logprobs (Optional[bool], optional): Whether to return log probabilities of the output tokens. (default: None) top_logprobs (Optional[int], optional): Number of most likely tokens to return at each token position. (default: None) deployment_id (Optional[str], optional): Deployment ID. (default: None) extra_headers (Optional[dict], optional): Additional headers for the request. (default: None) api_version (Optional[str], optional): API version. (default: None) mock_response (Optional[str], optional): Mock completion response for testing or debugging. (default: None) custom_llm_provider (Optional[str], optional): Non-OpenAI LLM provider. (default: None) max_retries (Optional[int], optional): Maximum number of retries. (default: None) """ timeout: Optional[Union[float, str]] = None temperature: Optional[float] = None top_p: Optional[float] = None n: Optional[int] = None stream: Optional[bool] = None stream_options: Optional[dict] = None stop: Optional[Union[str, List[str]]] = None max_tokens: Optional[int] = None presence_penalty: Optional[float] = None frequency_penalty: Optional[float] = None logit_bias: Optional[dict] = None user: Optional[str] = None response_format: Optional[dict] = None seed: Optional[int] = None tool_choice: Optional[Union[str, dict]] = None logprobs: Optional[bool] = None top_logprobs: Optional[int] = None deployment_id: Optional[str] = None extra_headers: Optional[dict] = None api_version: Optional[str] = None mock_response: Optional[str] = None custom_llm_provider: Optional[str] = None max_retries: Optional[int] = None
LITELLM_API_PARAMS = {param for param in LiteLLMConfig.model_fields.keys()}