Source code for camel.embeddings.azure_embedding
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations
import os
from typing import Any, Union
from openai import AzureOpenAI
from camel.embeddings.base import BaseEmbedding
from camel.types import EmbeddingModelType
from camel.utils import api_keys_required # Add this import
[docs]
class AzureEmbedding(BaseEmbedding[str]):
r"""Provides text embedding functionalities using Azure's OpenAI models.
Args:
model_type (EmbeddingModelType, optional): The model type to be
used for text embeddings.
(default: :obj:`TEXT_EMBEDDING_3_SMALL`)
url (Optional[str], optional): The url to the Azure OpenAI service.
(default: :obj:`None`)
api_key (str, optional): The API key for authenticating with the
Azure OpenAI service. (default: :obj:`None`)
api_version (str, optional): The API version for Azure OpenAI service.
(default: :obj:`None`)
dimensions (Optional[int], optional): The text embedding output
dimensions. (default: :obj:`None`)
Raises:
RuntimeError: If an unsupported model type is specified.
ValueError: If required API configuration is missing.
"""
@api_keys_required(
[
("api_key", 'AZURE_OPENAI_API_KEY'),
("url", 'AZURE_OPENAI_BASE_URL'),
]
)
def __init__(
self,
model_type: EmbeddingModelType = (
EmbeddingModelType.TEXT_EMBEDDING_3_SMALL
),
url: Union[str, None] = None,
api_key: Union[str, None] = None,
api_version: Union[str, None] = None,
dimensions: Union[int, None] = None,
) -> None:
self.model_type = model_type
self.api_version = api_version or os.environ.get("AZURE_API_VERSION")
if dimensions is None:
self.output_dim = model_type.output_dim
else:
if not isinstance(dimensions, int):
raise ValueError("dimensions must be an integer")
self.output_dim = dimensions
self._api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY")
self._url = url or os.environ.get("AZURE_OPENAI_BASE_URL")
self.client = AzureOpenAI(
api_key=self._api_key,
api_version=self.api_version,
azure_endpoint=str(self._url),
)
[docs]
def embed_list(
self,
objs: list[str],
**kwargs: Any,
) -> list[list[float]]:
r"""Embeds a list of texts using the Azure OpenAI model.
Args:
objs (list[str]): The list of texts to embed.
**kwargs (Any): Additional keyword arguments to pass to the API.
Returns:
list[list[float]]: The embeddings for the input texts.
"""
if self.model_type == EmbeddingModelType.TEXT_EMBEDDING_ADA_2:
response = self.client.embeddings.create(
input=objs,
model=self.model_type.value,
**kwargs,
)
return [data.embedding for data in response.data]
response = self.client.embeddings.create(
input=objs,
model=self.model_type.value,
dimensions=self.output_dim,
**kwargs,
)
return [data.embedding for data in response.data]
[docs]
def get_output_dim(self) -> int:
r"""Returns the output dimension of the embeddings.
Returns:
int: The dimensionality of the embedding for the current model.
"""
return self.output_dim