Source code for camel.embeddings.jina_embedding

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

import base64
import io
import os
from typing import Any, Optional, Union

import requests
from PIL import Image

from camel.embeddings import BaseEmbedding
from camel.types.enums import EmbeddingModelType
from camel.utils import api_keys_required


[docs] class JinaEmbedding(BaseEmbedding[Union[str, Image.Image]]): r"""Provides text and image embedding functionalities using Jina AI's API. Args: model_type (EmbeddingModelType, optional): The model to use for embeddings. (default: :obj:`JINA_EMBEDDINGS_V3`) api_key (Optional[str], optional): The API key for authenticating with Jina AI. (default: :obj:`None`) dimensions (Optional[int], optional): The dimension of the output embeddings. (default: :obj:`None`) embedding_type (Optional[str], optional): The type of embedding format to generate. Options: 'int8' (binary encoding with higher storage and transfer efficiency), 'uint8' (unsigned binary encoding with higher storage and transfer efficiency), 'base64' (base64 string encoding with higher transfer efficiency). (default: :obj:`None`) task (Optional[str], optional): The type of task for text embeddings. Options: retrieval.query, retrieval.passage, text-matching, classification, separation. (default: :obj:`None`) late_chunking (bool, optional): If true, concatenates all sentences in input and treats as a single input. (default: :obj:`False`) normalized (bool, optional): If true, embeddings are normalized to unit L2 norm. (default: :obj:`False`) """ @api_keys_required([("api_key", 'JINA_API_KEY')]) def __init__( self, model_type: EmbeddingModelType = EmbeddingModelType.JINA_EMBEDDINGS_V3, api_key: Optional[str] = None, dimensions: Optional[int] = None, embedding_type: Optional[str] = None, task: Optional[str] = None, late_chunking: bool = False, normalized: bool = False, ) -> None: if not model_type.is_jina: raise ValueError( f"Model type {model_type} is not a Jina model. " "Please use a valid Jina model type." ) self.model_type = model_type if dimensions is None: self.output_dim = model_type.output_dim else: self.output_dim = dimensions self._api_key = api_key or os.environ.get("JINA_API_KEY") self.embedding_type = embedding_type self.task = task self.late_chunking = late_chunking self.normalized = normalized self.url = 'https://api.jina.ai/v1/embeddings' self.headers = { 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'Bearer {self._api_key}', }
[docs] def embed_list( self, objs: list[Union[str, Image.Image]], **kwargs: Any, ) -> list[list[float]]: r"""Generates embeddings for the given texts or images. Args: objs (list[Union[str, Image.Image]]): The texts or images for which to generate the embeddings. **kwargs (Any): Extra kwargs passed to the embedding API. Not used in this implementation. Returns: list[list[float]]: A list that represents the generated embedding as a list of floating-point numbers. Raises: ValueError: If the input type is not supported. RuntimeError: If the API request fails. """ input_data = [] for obj in objs: if isinstance(obj, str): if self.model_type == EmbeddingModelType.JINA_CLIP_V2: input_data.append({"text": obj}) else: input_data.append(obj) # type: ignore[arg-type] elif isinstance(obj, Image.Image): if self.model_type != EmbeddingModelType.JINA_CLIP_V2: raise ValueError( f"Model {self.model_type} does not support " "image input. Use JINA_CLIP_V2 for image embeddings." ) # Convert PIL Image to base64 string buffered = io.BytesIO() obj.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() input_data.append({"image": img_str}) else: raise ValueError( f"Input type {type(obj)} is not supported. " "Must be either str or PIL.Image." ) data = { "model": self.model_type.value, "input": input_data, "embedding_type": "float", } if self.embedding_type is not None: data["embedding_type"] = self.embedding_type if self.task is not None: data["task"] = self.task if self.late_chunking: data["late_chunking"] = self.late_chunking # type: ignore[assignment] if self.normalized: data["normalized"] = self.normalized # type: ignore[assignment] try: response = requests.post( self.url, headers=self.headers, json=data, timeout=180 ) response.raise_for_status() result = response.json() return [data["embedding"] for data in result["data"]] except requests.exceptions.RequestException as e: raise RuntimeError(f"Failed to get embeddings from Jina AI: {e}")
[docs] def get_output_dim(self) -> int: r"""Returns the output dimension of the embeddings. Returns: int: The dimensionality of the embedding for the current model. """ return self.output_dim