Source code for camel.embeddings.vlm_embedding

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
from typing import Any, List, Optional, Union

from PIL import Image

from camel.embeddings import BaseEmbedding


[docs] class VisionLanguageEmbedding(BaseEmbedding[Union[str, Image.Image]]): r"""Provides image embedding functionalities using multimodal model. Args: model_name : The model type to be used for generating embeddings. And the default value is: obj:`openai/clip-vit-base-patch32`. Raises: RuntimeError: If an unsupported model type is specified. """ def __init__( self, model_name: str = "openai/clip-vit-base-patch32" ) -> None: r"""Initializes the: obj: `VisionLanguageEmbedding` class with a specified model and return the dimension of embeddings. Args: model_name (str, optional): The version name of the model to use. (default: :obj:`openai/clip-vit-base-patch32`) """ from transformers import AutoModel, AutoProcessor try: self.model = AutoModel.from_pretrained(model_name) self.processor = AutoProcessor.from_pretrained(model_name) except Exception as e: raise RuntimeError(f"Failed to load model '{model_name}': {e}") self.valid_processor_kwargs = [] self.valid_model_kwargs = [] try: self.valid_processor_kwargs = ( self.processor.image_processor._valid_processor_keys ) self.valid_model_kwargs = [ "pixel_values", "return_dict", "interpolate_pos_encoding", ] except Exception: print("Warning: not typically processor and model structure") pass self.dim: Optional[int] = None
[docs] def embed_list( self, objs: List[Union[Image.Image, str]], **kwargs: Any ) -> List[List[float]]: """Generates embeddings for the given images or texts. Args: objs (List[Image.Image|str]): The list of images or texts for which to generate the embeddings. image_processor_kwargs: Extra kwargs passed to the image processor. tokenizer_kwargs: Extra kwargs passed to the text tokenizer (processor). model_kwargs: Extra kwargs passed to the main model. Returns: List[List[float]]: A list that represents the generated embedding as a list of floating-point numbers. Raises: ValueError: If the input type is not `Image.Image` or `str`. """ if not objs: raise ValueError("Input objs list is empty.") image_processor_kwargs: Optional[dict] = kwargs.get( 'image_processor_kwargs', {} ) tokenizer_kwargs: Optional[dict] = kwargs.get('tokenizer_kwargs', {}) model_kwargs: Optional[dict] = kwargs.get('model_kwargs', {}) result_list = [] for obj in objs: if isinstance(obj, Image.Image): image_input = self.processor( images=obj, return_tensors="pt", padding=True, **image_processor_kwargs, ) image_feature = ( self.model.get_image_features( **image_input, **model_kwargs ) .squeeze(dim=0) .tolist() ) result_list.append(image_feature) elif isinstance(obj, str): text_input = self.processor( text=obj, return_tensors="pt", padding=True, **tokenizer_kwargs, ) text_feature = ( self.model.get_text_features(**text_input, **model_kwargs) .squeeze(dim=0) .tolist() ) result_list.append(text_feature) else: raise ValueError("Input type is not image nor text.") self.dim = len(result_list[0]) if any(len(result) != self.dim for result in result_list): raise ValueError("Dimensionality is not consistent.") return result_list
[docs] def get_output_dim(self) -> int: r"""Returns the output dimension of the embeddings. Returns: int: The dimensionality of the embedding for the current model. """ if self.dim is None: text = 'dimension' inputs = self.processor(text=[text], return_tensors="pt") self.dim = self.model.get_text_features(**inputs).shape[1] return self.dim