Source code for camel.embeddings.vlm_embedding
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
from typing import Any, List, Optional, Union
from PIL import Image
from camel.embeddings import BaseEmbedding
[docs]
class VisionLanguageEmbedding(BaseEmbedding[Union[str, Image.Image]]):
r"""Provides image embedding functionalities using multimodal model.
Args:
model_name : The model type to be used for generating embeddings.
And the default value is: obj:`openai/clip-vit-base-patch32`.
Raises:
RuntimeError: If an unsupported model type is specified.
"""
def __init__(
self, model_name: str = "openai/clip-vit-base-patch32"
) -> None:
r"""Initializes the: obj: `VisionLanguageEmbedding` class with a
specified model and return the dimension of embeddings.
Args:
model_name (str, optional): The version name of the model to use.
(default: :obj:`openai/clip-vit-base-patch32`)
"""
from transformers import AutoModel, AutoProcessor
try:
self.model = AutoModel.from_pretrained(model_name)
self.processor = AutoProcessor.from_pretrained(model_name)
except Exception as e:
raise RuntimeError(f"Failed to load model '{model_name}': {e}")
self.valid_processor_kwargs = []
self.valid_model_kwargs = []
try:
self.valid_processor_kwargs = (
self.processor.image_processor._valid_processor_keys
)
self.valid_model_kwargs = [
"pixel_values",
"return_dict",
"interpolate_pos_encoding",
]
except Exception:
print("Warning: not typically processor and model structure")
pass
self.dim: Optional[int] = None
[docs]
def embed_list(
self, objs: List[Union[Image.Image, str]], **kwargs: Any
) -> List[List[float]]:
"""Generates embeddings for the given images or texts.
Args:
objs (List[Image.Image|str]): The list of images or texts for
which to generate the embeddings.
image_processor_kwargs: Extra kwargs passed to the image processor.
tokenizer_kwargs: Extra kwargs passed to the text tokenizer
(processor).
model_kwargs: Extra kwargs passed to the main model.
Returns:
List[List[float]]: A list that represents the generated embedding
as a list of floating-point numbers.
Raises:
ValueError: If the input type is not `Image.Image` or `str`.
"""
if not objs:
raise ValueError("Input objs list is empty.")
image_processor_kwargs: Optional[dict] = kwargs.get(
'image_processor_kwargs', {}
)
tokenizer_kwargs: Optional[dict] = kwargs.get('tokenizer_kwargs', {})
model_kwargs: Optional[dict] = kwargs.get('model_kwargs', {})
result_list = []
for obj in objs:
if isinstance(obj, Image.Image):
image_input = self.processor(
images=obj,
return_tensors="pt",
padding=True,
**image_processor_kwargs,
)
image_feature = (
self.model.get_image_features(
**image_input, **model_kwargs
)
.squeeze(dim=0)
.tolist()
)
result_list.append(image_feature)
elif isinstance(obj, str):
text_input = self.processor(
text=obj,
return_tensors="pt",
padding=True,
**tokenizer_kwargs,
)
text_feature = (
self.model.get_text_features(**text_input, **model_kwargs)
.squeeze(dim=0)
.tolist()
)
result_list.append(text_feature)
else:
raise ValueError("Input type is not image nor text.")
self.dim = len(result_list[0])
if any(len(result) != self.dim for result in result_list):
raise ValueError("Dimensionality is not consistent.")
return result_list
[docs]
def get_output_dim(self) -> int:
r"""Returns the output dimension of the embeddings.
Returns:
int: The dimensionality of the embedding for the current model.
"""
if self.dim is None:
text = 'dimension'
inputs = self.processor(text=[text], return_tensors="pt")
self.dim = self.model.get_text_features(**inputs).shape[1]
return self.dim