Source code for camel.interpreters.internal_python_interpreter

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import ast
import difflib
import importlib
import typing
from typing import Any, ClassVar, Dict, List, Optional

from camel.interpreters.base import BaseInterpreter
from camel.interpreters.interpreter_error import InterpreterError


[docs] class InternalPythonInterpreter(BaseInterpreter): r"""A customized python interpreter to control the execution of LLM-generated codes. The interpreter makes sure the code can only execute functions given in action space and import white list. It also supports fuzzy variable matching to retrieve uncertain input variable name. .. highlight:: none This class is adapted from the hugging face implementation `python_interpreter.py <https://github.com/huggingface/transformers/blob/8f 093fb799246f7dd9104ff44728da0c53a9f67a/src/transformers/tools/python_interp reter.py>`_. The original license applies:: Copyright 2023 The HuggingFace Inc. team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. We have modified the original code to suit our requirements. We have encapsulated the original functions within a class and saved the interpreter state after execution. We have added support for "import" statements, "for" statements, and several binary and unary operators. We have added import white list to keep `import` statement safe. Additionally, we have modified the variable matching logic and introduced the :obj:`fuzz_state` for fuzzy matching. Modifications copyright (C) 2023 CAMEL-AI.org Args: action_space (Dict[str, Any], optional): A dictionary that maps action names to their corresponding functions or objects. The interpreter can only execute functions that are either directly listed in this dictionary or are member functions of objects listed in this dictionary. The concept of :obj:`action_space` is derived from EmbodiedAgent, representing the actions that an agent is capable of performing. If `None`, set to empty dict. (default: :obj:`None`) import_white_list (List[str], optional): A list that stores the Python modules or functions that can be imported in the code. All submodules and functions of the modules listed in this list are importable. Any other import statements will be rejected. The module and its submodule or function name are separated by a period (:obj:`.`). (default: :obj:`None`) unsafe_mode (bool, optional): If `True`, the interpreter runs the code by `eval()` without any security check. (default: :obj:`False`) raise_error (bool, optional): Raise error if the interpreter fails. (default: :obj:`False`) """ _CODE_TYPES: ClassVar[List[str]] = ["python", "py", "python3", "python2"] def __init__( self, action_space: Optional[Dict[str, Any]] = None, import_white_list: Optional[List[str]] = None, unsafe_mode: bool = False, raise_error: bool = False, ) -> None: self.action_space = action_space or dict() self.state = self.action_space.copy() self.fuzz_state: Dict[str, Any] = dict() self.import_white_list = import_white_list or list() self.raise_error = raise_error self.unsafe_mode = unsafe_mode
[docs] def run(self, code: str, code_type: str) -> str: r"""Executes the given code with specified code type in the interpreter. This method takes a string of code and its type, checks if the code type is supported, and then executes the code. If `unsafe_mode` is set to `False`, the code is executed in a controlled environment using the `execute` method. If `unsafe_mode` is `True`, the code is executed using `eval()` with the action space as the global context. An `InterpreterError` is raised if the code type is unsupported or if any runtime error occurs during execution. Args: code (str): The python code to be executed. code_type (str): The type of the code, which should be one of the supported code types (`python`, `py`, `python3`, `python2`). Returns: str: The string representation of the output of the executed code. Raises: InterpreterError: If the `code_type` is not supported or if any runtime error occurs during the execution of the code. """ if code_type not in self._CODE_TYPES: raise InterpreterError( f"Unsupported code type {code_type}. " f"`{self.__class__.__name__}` only supports " f"{', '.join(self._CODE_TYPES)}." ) if not self.unsafe_mode: return str(self.execute(code)) else: return str(eval(code, self.action_space))
[docs] def update_action_space(self, action_space: Dict[str, Any]) -> None: r"""Updates action space for *python* interpreter.""" self.action_space.update(action_space)
[docs] def supported_code_types(self) -> List[str]: r"""Provides supported code types by the interpreter.""" return self._CODE_TYPES
[docs] def execute( self, code: str, state: Optional[Dict[str, Any]] = None, fuzz_state: Optional[Dict[str, Any]] = None, keep_state: bool = True, ) -> Any: r"""Execute the input python codes in a security environment. Args: code (str): Generated python code to be executed. state (Optional[Dict[str, Any]], optional): External variables that may be used in the generated code. (default: :obj:`None`) fuzz_state (Optional[Dict[str, Any]], optional): External variables that do not have certain variable names. The interpreter will use fuzzy matching to access these variables. For example, if :obj:`fuzz_state` has a variable :obj:`image`, the generated code can use :obj:`input_image` to access it. (default: :obj:`None`) keep_state (bool, optional): If :obj:`True`, :obj:`state` and :obj:`fuzz_state` will be kept for later execution. Otherwise, they will be cleared. (default: :obj:`True`) Returns: Any: The value of the last statement (excluding "import") in the code. For this interpreter, the value of an expression is its value, the value of an "assign" statement is the assigned value, and the value of an "if" and "for" block statement is the value of the last statement in the block. """ if state is not None: self.state.update(state) if fuzz_state is not None: self.fuzz_state.update(fuzz_state) try: expression = ast.parse(code) except SyntaxError as e: if self.raise_error: raise InterpreterError(f"Syntax error in code: {e}") else: import traceback return traceback.format_exc() result = None for idx, node in enumerate(expression.body): try: line_result = self._execute_ast(node) except InterpreterError as e: if not keep_state: self.clear_state() msg = ( f"Evaluation of the code stopped at node {idx}. " f"See:\n{e}" ) # More information can be provided by `ast.unparse()`, # which is new in python 3.9. if self.raise_error: raise InterpreterError(msg) else: import traceback return traceback.format_exc() if line_result is not None: result = line_result if not keep_state: self.clear_state() return result
[docs] def clear_state(self) -> None: r"""Initialize :obj:`state` and :obj:`fuzz_state`.""" self.state = self.action_space.copy() self.fuzz_state = {}
# ast.Index is deprecated after python 3.9, which cannot pass type check, # but is still necessary for older versions. @typing.no_type_check def _execute_ast(self, expression: ast.AST) -> Any: if isinstance(expression, ast.Assign): # Assignment -> evaluate the assignment which should # update the state. We return the variable assigned as it may # be used to determine the final result. return self._execute_assign(expression) elif isinstance(expression, ast.Attribute): value = self._execute_ast(expression.value) return getattr(value, expression.attr) elif isinstance(expression, ast.BinOp): # Binary Operator -> return the result value return self._execute_binop(expression) elif isinstance(expression, ast.Call): # Function call -> return the value of the function call return self._execute_call(expression) elif isinstance(expression, ast.Compare): # Compare -> return True or False return self._execute_condition(expression) elif isinstance(expression, ast.Constant): # Constant -> just return the value return expression.value elif isinstance(expression, ast.Dict): # Dict -> evaluate all keys and values result: Dict = {} for k, v in zip(expression.keys, expression.values): if k is not None: result[self._execute_ast(k)] = self._execute_ast(v) else: result.update(self._execute_ast(v)) return result elif isinstance(expression, ast.Expr): # Expression -> evaluate the content return self._execute_ast(expression.value) elif isinstance(expression, ast.For): return self._execute_for(expression) elif isinstance(expression, ast.FormattedValue): # Formatted value (part of f-string) -> evaluate the content # and return return self._execute_ast(expression.value) elif isinstance(expression, ast.If): # If -> execute the right branch return self._execute_if(expression) elif isinstance(expression, ast.Import): # Import -> add imported names in self.state and return None. self._execute_import(expression) return None elif isinstance(expression, ast.ImportFrom): self._execute_import_from(expression) return None elif hasattr(ast, "Index") and isinstance(expression, ast.Index): # cannot pass type check return self._execute_ast(expression.value) elif isinstance(expression, ast.JoinedStr): return "".join( [str(self._execute_ast(v)) for v in expression.values] ) elif isinstance(expression, ast.List): # List -> evaluate all elements return [self._execute_ast(elt) for elt in expression.elts] elif isinstance(expression, ast.Name): # Name -> pick up the value in the state return self._execute_name(expression) elif isinstance(expression, ast.Subscript): # Subscript -> return the value of the indexing return self._execute_subscript(expression) elif isinstance(expression, ast.Tuple): return tuple([self._execute_ast(elt) for elt in expression.elts]) elif isinstance(expression, ast.UnaryOp): # Binary Operator -> return the result value return self._execute_unaryop(expression) else: # For now we refuse anything else. Let's add things as we need # them. raise InterpreterError( f"{expression.__class__.__name__} is not supported." ) def _execute_assign(self, assign: ast.Assign) -> Any: targets = assign.targets result = self._execute_ast(assign.value) for target in targets: self._assign(target, result) return result def _assign(self, target: ast.expr, value: Any): if isinstance(target, ast.Name): self.state[target.id] = value elif isinstance(target, ast.Tuple): if not isinstance(value, tuple): raise InterpreterError( f"Expected type tuple, but got" f"{value.__class__.__name__} instead." ) if len(target.elts) != len(value): raise InterpreterError( f"Expected {len(target.elts)} values but got" f" {len(value)}." ) for t, v in zip(target.elts, value): self.state[self._execute_ast(t)] = v else: raise InterpreterError( f"Unsupported variable type. Expected " f"ast.Name or ast.Tuple, got " f"{target.__class__.__name__} instead." ) def _execute_call(self, call: ast.Call) -> Any: callable_func = self._execute_ast(call.func) # Todo deal with args args = [self._execute_ast(arg) for arg in call.args] kwargs = { keyword.arg: self._execute_ast(keyword.value) for keyword in call.keywords } return callable_func(*args, **kwargs) def _execute_subscript(self, subscript: ast.Subscript): index = self._execute_ast(subscript.slice) value = self._execute_ast(subscript.value) if not isinstance(subscript.ctx, ast.Load): raise InterpreterError( f"{subscript.ctx.__class__.__name__} is not supported for " "subscript." ) if isinstance(value, (list, tuple)): return value[int(index)] if index in value: return value[index] if isinstance(index, str) and isinstance(value, dict): close_matches = difflib.get_close_matches( index, [key for key in list(value.keys()) if isinstance(key, str)], ) if len(close_matches) > 0: return value[close_matches[0]] raise InterpreterError(f"Could not index {value} with '{index}'.") def _execute_name(self, name: ast.Name): if isinstance(name.ctx, ast.Store): return name.id elif isinstance(name.ctx, ast.Load): return self._get_value_from_state(name.id) else: raise InterpreterError(f"{name.ctx} is not supported.") def _execute_condition(self, condition: ast.Compare): if len(condition.ops) > 1: raise InterpreterError( "Cannot evaluate conditions with multiple operators" ) left = self._execute_ast(condition.left) comparator = condition.ops[0] right = self._execute_ast(condition.comparators[0]) if isinstance(comparator, ast.Eq): return left == right elif isinstance(comparator, ast.NotEq): return left != right elif isinstance(comparator, ast.Lt): return left < right elif isinstance(comparator, ast.LtE): return left <= right elif isinstance(comparator, ast.Gt): return left > right elif isinstance(comparator, ast.GtE): return left >= right elif isinstance(comparator, ast.Is): return left is right elif isinstance(comparator, ast.IsNot): return left is not right elif isinstance(comparator, ast.In): return left in right elif isinstance(comparator, ast.NotIn): return left not in right else: raise InterpreterError(f"Unsupported operator: {comparator}") def _execute_if(self, if_statement: ast.If): result = None if not isinstance(if_statement.test, ast.Compare): raise InterpreterError( "Only Campare expr supported in if statement, get" f" {if_statement.test.__class__.__name__}" ) if self._execute_condition(if_statement.test): for line in if_statement.body: line_result = self._execute_ast(line) if line_result is not None: result = line_result else: for line in if_statement.orelse: line_result = self._execute_ast(line) if line_result is not None: result = line_result return result def _execute_for(self, for_statement: ast.For): result = None for value in self._execute_ast(for_statement.iter): self._assign(for_statement.target, value) for line in for_statement.body: line_result = self._execute_ast(line) if line_result is not None: result = line_result return result def _execute_import(self, import_module: ast.Import) -> None: for module in import_module.names: self._validate_import(module.name) alias = module.asname or module.name self.state[alias] = importlib.import_module(module.name) def _execute_import_from(self, import_from: ast.ImportFrom): if import_from.module is None: raise InterpreterError("\"from . import\" is not supported.") for import_name in import_from.names: full_name = import_from.module + f".{import_name.name}" self._validate_import(full_name) imported_module = importlib.import_module(import_from.module) alias = import_name.asname or import_name.name self.state[alias] = getattr(imported_module, import_name.name) def _validate_import(self, full_name: str): tmp_name = "" found_name = False for name in full_name.split("."): tmp_name += name if tmp_name == "" else f".{name}" if tmp_name in self.import_white_list: found_name = True return if not found_name: raise InterpreterError( f"It is not permitted to import modules " f"than module white list (try to import " f"{full_name})." ) def _execute_binop(self, binop: ast.BinOp): left = self._execute_ast(binop.left) operator = binop.op right = self._execute_ast(binop.right) if isinstance(operator, ast.Add): return left + right elif isinstance(operator, ast.Sub): return left - right elif isinstance(operator, ast.Mult): return left * right elif isinstance(operator, ast.Div): return left / right elif isinstance(operator, ast.FloorDiv): return left // right elif isinstance(operator, ast.Mod): return left % right elif isinstance(operator, ast.Pow): return left**right elif isinstance(operator, ast.LShift): return left << right elif isinstance(operator, ast.RShift): return left >> right elif isinstance(operator, ast.MatMult): return left @ right else: raise InterpreterError(f"Operator not supported: {operator}") def _execute_unaryop(self, unaryop: ast.UnaryOp): operand = self._execute_ast(unaryop.operand) operator = unaryop.op if isinstance(operator, ast.UAdd): return +operand elif isinstance(operator, ast.USub): return -operand elif isinstance(operator, ast.Not): return not operand else: raise InterpreterError(f"Operator not supported: {operator}") def _get_value_from_state(self, key: str) -> Any: if key in self.state: return self.state[key] else: close_matches = difflib.get_close_matches( key, list(self.fuzz_state.keys()), n=1 ) if close_matches: return self.fuzz_state[close_matches[0]] else: raise InterpreterError(f"The variable `{key}` is not defined.")