# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import ast
import difflib
import importlib
import typing
from typing import Any, ClassVar, Dict, List, Optional
from camel.interpreters.base import BaseInterpreter
from camel.interpreters.interpreter_error import InterpreterError
[docs]
class InternalPythonInterpreter(BaseInterpreter):
r"""A customized python interpreter to control the execution of
LLM-generated codes. The interpreter makes sure the code can only execute
functions given in action space and import white list. It also supports
fuzzy variable matching to retrieve uncertain input variable name.
.. highlight:: none
This class is adapted from the hugging face implementation
`python_interpreter.py <https://github.com/huggingface/transformers/blob/8f
093fb799246f7dd9104ff44728da0c53a9f67a/src/transformers/tools/python_interp
reter.py>`_. The original license applies::
Copyright 2023 The HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
We have modified the original code to suit our requirements. We have
encapsulated the original functions within a class and saved the
interpreter state after execution. We have added support for "import"
statements, "for" statements, and several binary and unary operators. We
have added import white list to keep `import` statement safe. Additionally,
we have modified the variable matching logic and introduced the
:obj:`fuzz_state` for fuzzy matching.
Modifications copyright (C) 2023 CAMEL-AI.org
Args:
action_space (Dict[str, Any], optional): A dictionary that maps action
names to their corresponding functions or objects. The interpreter
can only execute functions that are either directly listed in this
dictionary or are member functions of objects listed in this
dictionary. The concept of :obj:`action_space` is derived from
EmbodiedAgent, representing the actions that an agent is capable of
performing. If `None`, set to empty dict. (default: :obj:`None`)
import_white_list (List[str], optional): A list that stores
the Python modules or functions that can be imported in the code.
All submodules and functions of the modules listed in this list are
importable. Any other import statements will be rejected. The
module and its submodule or function name are separated by a period
(:obj:`.`). (default: :obj:`None`)
unsafe_mode (bool, optional): If `True`, the interpreter runs the code
by `eval()` without any security check. (default: :obj:`False`)
raise_error (bool, optional): Raise error if the interpreter fails.
(default: :obj:`False`)
"""
_CODE_TYPES: ClassVar[List[str]] = ["python", "py", "python3", "python2"]
def __init__(
self,
action_space: Optional[Dict[str, Any]] = None,
import_white_list: Optional[List[str]] = None,
unsafe_mode: bool = False,
raise_error: bool = False,
) -> None:
self.action_space = action_space or dict()
self.state = self.action_space.copy()
self.fuzz_state: Dict[str, Any] = dict()
self.import_white_list = import_white_list or list()
self.raise_error = raise_error
self.unsafe_mode = unsafe_mode
[docs]
def run(self, code: str, code_type: str) -> str:
r"""Executes the given code with specified code type in the
interpreter.
This method takes a string of code and its type, checks if the code
type is supported, and then executes the code. If `unsafe_mode` is
set to `False`, the code is executed in a controlled environment using
the `execute` method. If `unsafe_mode` is `True`, the code is executed
using `eval()` with the action space as the global context. An
`InterpreterError` is raised if the code type is unsupported or if any
runtime error occurs during execution.
Args:
code (str): The python code to be executed.
code_type (str): The type of the code, which should be one of the
supported code types (`python`, `py`, `python3`, `python2`).
Returns:
str: The string representation of the output of the executed code.
Raises:
InterpreterError: If the `code_type` is not supported or if any
runtime error occurs during the execution of the code.
"""
if code_type not in self._CODE_TYPES:
raise InterpreterError(
f"Unsupported code type {code_type}. "
f"`{self.__class__.__name__}` only supports "
f"{', '.join(self._CODE_TYPES)}."
)
if not self.unsafe_mode:
return str(self.execute(code))
else:
return str(eval(code, self.action_space))
[docs]
def update_action_space(self, action_space: Dict[str, Any]) -> None:
r"""Updates action space for *python* interpreter."""
self.action_space.update(action_space)
[docs]
def supported_code_types(self) -> List[str]:
r"""Provides supported code types by the interpreter."""
return self._CODE_TYPES
[docs]
def execute(
self,
code: str,
state: Optional[Dict[str, Any]] = None,
fuzz_state: Optional[Dict[str, Any]] = None,
keep_state: bool = True,
) -> Any:
r"""Execute the input python codes in a security environment.
Args:
code (str): Generated python code to be executed.
state (Optional[Dict[str, Any]], optional): External variables that
may be used in the generated code. (default: :obj:`None`)
fuzz_state (Optional[Dict[str, Any]], optional): External variables
that do not have certain variable names. The interpreter will
use fuzzy matching to access these variables. For example, if
:obj:`fuzz_state` has a variable :obj:`image`, the generated
code can use :obj:`input_image` to access it. (default:
:obj:`None`)
keep_state (bool, optional): If :obj:`True`, :obj:`state` and
:obj:`fuzz_state` will be kept for later execution. Otherwise,
they will be cleared. (default: :obj:`True`)
Returns:
Any: The value of the last statement (excluding "import") in the
code. For this interpreter, the value of an expression is its
value, the value of an "assign" statement is the assigned
value, and the value of an "if" and "for" block statement is
the value of the last statement in the block.
"""
if state is not None:
self.state.update(state)
if fuzz_state is not None:
self.fuzz_state.update(fuzz_state)
try:
expression = ast.parse(code)
except SyntaxError as e:
if self.raise_error:
raise InterpreterError(f"Syntax error in code: {e}")
else:
import traceback
return traceback.format_exc()
result = None
for idx, node in enumerate(expression.body):
try:
line_result = self._execute_ast(node)
except InterpreterError as e:
if not keep_state:
self.clear_state()
msg = (
f"Evaluation of the code stopped at node {idx}. "
f"See:\n{e}"
)
# More information can be provided by `ast.unparse()`,
# which is new in python 3.9.
if self.raise_error:
raise InterpreterError(msg)
else:
import traceback
return traceback.format_exc()
if line_result is not None:
result = line_result
if not keep_state:
self.clear_state()
return result
[docs]
def clear_state(self) -> None:
r"""Initialize :obj:`state` and :obj:`fuzz_state`."""
self.state = self.action_space.copy()
self.fuzz_state = {}
# ast.Index is deprecated after python 3.9, which cannot pass type check,
# but is still necessary for older versions.
@typing.no_type_check
def _execute_ast(self, expression: ast.AST) -> Any:
if isinstance(expression, ast.Assign):
# Assignment -> evaluate the assignment which should
# update the state. We return the variable assigned as it may
# be used to determine the final result.
return self._execute_assign(expression)
elif isinstance(expression, ast.Attribute):
value = self._execute_ast(expression.value)
return getattr(value, expression.attr)
elif isinstance(expression, ast.BinOp):
# Binary Operator -> return the result value
return self._execute_binop(expression)
elif isinstance(expression, ast.Call):
# Function call -> return the value of the function call
return self._execute_call(expression)
elif isinstance(expression, ast.Compare):
# Compare -> return True or False
return self._execute_condition(expression)
elif isinstance(expression, ast.Constant):
# Constant -> just return the value
return expression.value
elif isinstance(expression, ast.Dict):
# Dict -> evaluate all keys and values
result: Dict = {}
for k, v in zip(expression.keys, expression.values):
if k is not None:
result[self._execute_ast(k)] = self._execute_ast(v)
else:
result.update(self._execute_ast(v))
return result
elif isinstance(expression, ast.Expr):
# Expression -> evaluate the content
return self._execute_ast(expression.value)
elif isinstance(expression, ast.For):
return self._execute_for(expression)
elif isinstance(expression, ast.FormattedValue):
# Formatted value (part of f-string) -> evaluate the content
# and return
return self._execute_ast(expression.value)
elif isinstance(expression, ast.If):
# If -> execute the right branch
return self._execute_if(expression)
elif isinstance(expression, ast.Import):
# Import -> add imported names in self.state and return None.
self._execute_import(expression)
return None
elif isinstance(expression, ast.ImportFrom):
self._execute_import_from(expression)
return None
elif hasattr(ast, "Index") and isinstance(expression, ast.Index):
# cannot pass type check
return self._execute_ast(expression.value)
elif isinstance(expression, ast.JoinedStr):
return "".join(
[str(self._execute_ast(v)) for v in expression.values]
)
elif isinstance(expression, ast.List):
# List -> evaluate all elements
return [self._execute_ast(elt) for elt in expression.elts]
elif isinstance(expression, ast.Name):
# Name -> pick up the value in the state
return self._execute_name(expression)
elif isinstance(expression, ast.Subscript):
# Subscript -> return the value of the indexing
return self._execute_subscript(expression)
elif isinstance(expression, ast.Tuple):
return tuple([self._execute_ast(elt) for elt in expression.elts])
elif isinstance(expression, ast.UnaryOp):
# Binary Operator -> return the result value
return self._execute_unaryop(expression)
else:
# For now we refuse anything else. Let's add things as we need
# them.
raise InterpreterError(
f"{expression.__class__.__name__} is not supported."
)
def _execute_assign(self, assign: ast.Assign) -> Any:
targets = assign.targets
result = self._execute_ast(assign.value)
for target in targets:
self._assign(target, result)
return result
def _assign(self, target: ast.expr, value: Any):
if isinstance(target, ast.Name):
self.state[target.id] = value
elif isinstance(target, ast.Tuple):
if not isinstance(value, tuple):
raise InterpreterError(
f"Expected type tuple, but got"
f"{value.__class__.__name__} instead."
)
if len(target.elts) != len(value):
raise InterpreterError(
f"Expected {len(target.elts)} values but got"
f" {len(value)}."
)
for t, v in zip(target.elts, value):
self.state[self._execute_ast(t)] = v
else:
raise InterpreterError(
f"Unsupported variable type. Expected "
f"ast.Name or ast.Tuple, got "
f"{target.__class__.__name__} instead."
)
def _execute_call(self, call: ast.Call) -> Any:
callable_func = self._execute_ast(call.func)
# Todo deal with args
args = [self._execute_ast(arg) for arg in call.args]
kwargs = {
keyword.arg: self._execute_ast(keyword.value)
for keyword in call.keywords
}
return callable_func(*args, **kwargs)
def _execute_subscript(self, subscript: ast.Subscript):
index = self._execute_ast(subscript.slice)
value = self._execute_ast(subscript.value)
if not isinstance(subscript.ctx, ast.Load):
raise InterpreterError(
f"{subscript.ctx.__class__.__name__} is not supported for "
"subscript."
)
if isinstance(value, (list, tuple)):
return value[int(index)]
if index in value:
return value[index]
if isinstance(index, str) and isinstance(value, dict):
close_matches = difflib.get_close_matches(
index,
[key for key in list(value.keys()) if isinstance(key, str)],
)
if len(close_matches) > 0:
return value[close_matches[0]]
raise InterpreterError(f"Could not index {value} with '{index}'.")
def _execute_name(self, name: ast.Name):
if isinstance(name.ctx, ast.Store):
return name.id
elif isinstance(name.ctx, ast.Load):
return self._get_value_from_state(name.id)
else:
raise InterpreterError(f"{name.ctx} is not supported.")
def _execute_condition(self, condition: ast.Compare):
if len(condition.ops) > 1:
raise InterpreterError(
"Cannot evaluate conditions with multiple operators"
)
left = self._execute_ast(condition.left)
comparator = condition.ops[0]
right = self._execute_ast(condition.comparators[0])
if isinstance(comparator, ast.Eq):
return left == right
elif isinstance(comparator, ast.NotEq):
return left != right
elif isinstance(comparator, ast.Lt):
return left < right
elif isinstance(comparator, ast.LtE):
return left <= right
elif isinstance(comparator, ast.Gt):
return left > right
elif isinstance(comparator, ast.GtE):
return left >= right
elif isinstance(comparator, ast.Is):
return left is right
elif isinstance(comparator, ast.IsNot):
return left is not right
elif isinstance(comparator, ast.In):
return left in right
elif isinstance(comparator, ast.NotIn):
return left not in right
else:
raise InterpreterError(f"Unsupported operator: {comparator}")
def _execute_if(self, if_statement: ast.If):
result = None
if not isinstance(if_statement.test, ast.Compare):
raise InterpreterError(
"Only Campare expr supported in if statement, get"
f" {if_statement.test.__class__.__name__}"
)
if self._execute_condition(if_statement.test):
for line in if_statement.body:
line_result = self._execute_ast(line)
if line_result is not None:
result = line_result
else:
for line in if_statement.orelse:
line_result = self._execute_ast(line)
if line_result is not None:
result = line_result
return result
def _execute_for(self, for_statement: ast.For):
result = None
for value in self._execute_ast(for_statement.iter):
self._assign(for_statement.target, value)
for line in for_statement.body:
line_result = self._execute_ast(line)
if line_result is not None:
result = line_result
return result
def _execute_import(self, import_module: ast.Import) -> None:
for module in import_module.names:
self._validate_import(module.name)
alias = module.asname or module.name
self.state[alias] = importlib.import_module(module.name)
def _execute_import_from(self, import_from: ast.ImportFrom):
if import_from.module is None:
raise InterpreterError("\"from . import\" is not supported.")
for import_name in import_from.names:
full_name = import_from.module + f".{import_name.name}"
self._validate_import(full_name)
imported_module = importlib.import_module(import_from.module)
alias = import_name.asname or import_name.name
self.state[alias] = getattr(imported_module, import_name.name)
def _validate_import(self, full_name: str):
tmp_name = ""
found_name = False
for name in full_name.split("."):
tmp_name += name if tmp_name == "" else f".{name}"
if tmp_name in self.import_white_list:
found_name = True
return
if not found_name:
raise InterpreterError(
f"It is not permitted to import modules "
f"than module white list (try to import "
f"{full_name})."
)
def _execute_binop(self, binop: ast.BinOp):
left = self._execute_ast(binop.left)
operator = binop.op
right = self._execute_ast(binop.right)
if isinstance(operator, ast.Add):
return left + right
elif isinstance(operator, ast.Sub):
return left - right
elif isinstance(operator, ast.Mult):
return left * right
elif isinstance(operator, ast.Div):
return left / right
elif isinstance(operator, ast.FloorDiv):
return left // right
elif isinstance(operator, ast.Mod):
return left % right
elif isinstance(operator, ast.Pow):
return left**right
elif isinstance(operator, ast.LShift):
return left << right
elif isinstance(operator, ast.RShift):
return left >> right
elif isinstance(operator, ast.MatMult):
return left @ right
else:
raise InterpreterError(f"Operator not supported: {operator}")
def _execute_unaryop(self, unaryop: ast.UnaryOp):
operand = self._execute_ast(unaryop.operand)
operator = unaryop.op
if isinstance(operator, ast.UAdd):
return +operand
elif isinstance(operator, ast.USub):
return -operand
elif isinstance(operator, ast.Not):
return not operand
else:
raise InterpreterError(f"Operator not supported: {operator}")
def _get_value_from_state(self, key: str) -> Any:
if key in self.state:
return self.state[key]
else:
close_matches = difflib.get_close_matches(
key, list(self.fuzz_state.keys()), n=1
)
if close_matches:
return self.fuzz_state[close_matches[0]]
else:
raise InterpreterError(f"The variable `{key}` is not defined.")