Source code for camel.loaders.unstructured_io

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import uuid
import warnings
from typing import (
    IO,
    TYPE_CHECKING,
    Any,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
)

if TYPE_CHECKING:
    from unstructured.documents.elements import Element


[docs] class UnstructuredIO: r"""A class to handle various functionalities provided by the Unstructured library, including version checking, parsing, cleaning, extracting, staging, chunking data, and integrating with cloud services like S3 and Azure for data connection. References: https://docs.unstructured.io/ """
[docs] @staticmethod def create_element_from_text( text: str, element_id: Optional[str] = None, embeddings: Optional[List[float]] = None, filename: Optional[str] = None, file_directory: Optional[str] = None, last_modified: Optional[str] = None, filetype: Optional[str] = None, parent_id: Optional[str] = None, ) -> "Element": r"""Creates a Text element from a given text input, with optional metadata and embeddings. Args: text (str): The text content for the element. element_id (Optional[str], optional): Unique identifier for the element. (default: :obj:`None`) embeddings (List[float], optional): A list of float numbers representing the text embeddings. (default: :obj:`None`) filename (Optional[str], optional): The name of the file the element is associated with. (default: :obj:`None`) file_directory (Optional[str], optional): The directory path where the file is located. (default: :obj:`None`) last_modified (Optional[str], optional): The last modified date of the file. (default: :obj:`None`) filetype (Optional[str], optional): The type of the file. (default: :obj:`None`) parent_id (Optional[str], optional): The identifier of the parent element. (default: :obj:`None`) Returns: Element: An instance of Text with the provided content and metadata. """ from unstructured.documents.elements import ElementMetadata, Text metadata = ElementMetadata( filename=filename, file_directory=file_directory, last_modified=last_modified, filetype=filetype, parent_id=parent_id, ) return Text( text=text, element_id=element_id or str(uuid.uuid4()), metadata=metadata, embeddings=embeddings, )
[docs] @staticmethod def parse_file_or_url( input_path: str, **kwargs: Any, ) -> Union[List["Element"], None]: r"""Loads a file or a URL and parses its contents into elements. Args: input_path (str): Path to the file or URL to be parsed. **kwargs: Extra kwargs passed to the partition function. Returns: Union[List[Element],None]: List of elements after parsing the file or URL if success. Raises: FileNotFoundError: If the file does not exist at the path specified. Notes: Supported file types: "csv", "doc", "docx", "epub", "image", "md", "msg", "odt", "org", "pdf", "ppt", "pptx", "rtf", "rst", "tsv", "xlsx". References: https://unstructured-io.github.io/unstructured/ """ import os from urllib.parse import urlparse from unstructured.partition.auto import partition # Check if the input is a URL parsed_url = urlparse(input_path) is_url = all([parsed_url.scheme, parsed_url.netloc]) # Handling URL if is_url: try: elements = partition(url=input_path, **kwargs) return elements except Exception: warnings.warn(f"Failed to parse the URL: {input_path}") return None # Handling file else: # Check if the file exists if not os.path.exists(input_path): raise FileNotFoundError( f"The file {input_path} was not found." ) # Read the file try: with open(input_path, "rb") as f: elements = partition(file=f, **kwargs) return elements except Exception: warnings.warn(f"Failed to partition the file: {input_path}") return None
[docs] @staticmethod def parse_bytes( file: IO[bytes], **kwargs: Any ) -> Union[List["Element"], None]: r"""Parses a bytes stream and converts its contents into elements. Args: file (IO[bytes]): The file in bytes format to be parsed. **kwargs: Extra kwargs passed to the partition function. Returns: Union[List[Element], None]: List of elements after parsing the file if successful, otherwise `None`. Notes: Supported file types: "csv", "doc", "docx", "epub", "image", "md", "msg", "odt", "org", "pdf", "ppt", "pptx", "rtf", "rst", "tsv", "xlsx". References: https://docs.unstructured.io/open-source/core-functionality/partitioning """ from unstructured.partition.auto import partition try: # Use partition to process the bytes stream elements = partition(file=file, **kwargs) return elements except Exception as e: warnings.warn(f"Failed to partition the file stream: {e}") return None
[docs] @staticmethod def clean_text_data( text: str, clean_options: Optional[List[Tuple[str, Dict[str, Any]]]] = None, ) -> str: r"""Cleans text data using a variety of cleaning functions provided by the `unstructured` library. This function applies multiple text cleaning utilities by calling the `unstructured` library's cleaning bricks for operations like replacing Unicode quotes, removing extra whitespace, dashes, non-ascii characters, and more. If no cleaning options are provided, a default set of cleaning operations is applied. These defaults including operations "replace_unicode_quotes", "clean_non_ascii_chars", "group_broken_paragraphs", and "clean_extra_whitespace". Args: text (str): The text to be cleaned. clean_options (dict): A dictionary specifying which cleaning options to apply. The keys should match the names of the cleaning functions, and the values should be dictionaries containing the parameters for each function. Supported types: 'clean_extra_whitespace', 'clean_bullets', 'clean_ordered_bullets', 'clean_postfix', 'clean_prefix', 'clean_dashes', 'clean_trailing_punctuation', 'clean_non_ascii_chars', 'group_broken_paragraphs', 'remove_punctuation', 'replace_unicode_quotes', 'bytes_string_to_string', 'translate_text'. Returns: str: The cleaned text. Raises: AttributeError: If a cleaning option does not correspond to a valid cleaning function in `unstructured`. Notes: The 'options' dictionary keys must correspond to valid cleaning brick names from the `unstructured` library. Each brick's parameters must be provided in a nested dictionary as the value for the key. References: https://unstructured-io.github.io/unstructured/ """ from unstructured.cleaners.core import ( bytes_string_to_string, clean_bullets, clean_dashes, clean_extra_whitespace, clean_non_ascii_chars, clean_ordered_bullets, clean_postfix, clean_prefix, clean_trailing_punctuation, group_broken_paragraphs, remove_punctuation, replace_unicode_quotes, ) from unstructured.cleaners.translate import translate_text cleaning_functions: Any = { "clean_extra_whitespace": clean_extra_whitespace, "clean_bullets": clean_bullets, "clean_ordered_bullets": clean_ordered_bullets, "clean_postfix": clean_postfix, "clean_prefix": clean_prefix, "clean_dashes": clean_dashes, "clean_trailing_punctuation": clean_trailing_punctuation, "clean_non_ascii_chars": clean_non_ascii_chars, "group_broken_paragraphs": group_broken_paragraphs, "remove_punctuation": remove_punctuation, "replace_unicode_quotes": replace_unicode_quotes, "bytes_string_to_string": bytes_string_to_string, "translate_text": translate_text, } # Define default clean options if none are provided if clean_options is None: clean_options = [ ("replace_unicode_quotes", {}), ("clean_non_ascii_chars", {}), ("group_broken_paragraphs", {}), ("clean_extra_whitespace", {}), ] cleaned_text = text for func_name, params in clean_options: if func_name in cleaning_functions: cleaned_text = cleaning_functions[func_name]( cleaned_text, **params ) else: raise ValueError( f"'{func_name}' is not a valid function in " "`Unstructured IO`." ) return cleaned_text
[docs] @staticmethod def extract_data_from_text( text: str, extract_type: Literal[ 'extract_datetimetz', 'extract_email_address', 'extract_ip_address', 'extract_ip_address_name', 'extract_mapi_id', 'extract_ordered_bullets', 'extract_text_after', 'extract_text_before', 'extract_us_phone_number', ], **kwargs, ) -> Any: r"""Extracts various types of data from text using functions from unstructured.cleaners.extract. Args: text (str): Text to extract data from. extract_type (Literal['extract_datetimetz', 'extract_email_address', 'extract_ip_address', 'extract_ip_address_name', 'extract_mapi_id', 'extract_ordered_bullets', 'extract_text_after', 'extract_text_before', 'extract_us_phone_number']): Type of data to extract. **kwargs: Additional keyword arguments for specific extraction functions. Returns: Any: The extracted data, type depends on extract_type. References: https://unstructured-io.github.io/unstructured/ """ from unstructured.cleaners.extract import ( extract_datetimetz, extract_email_address, extract_ip_address, extract_ip_address_name, extract_mapi_id, extract_ordered_bullets, extract_text_after, extract_text_before, extract_us_phone_number, ) extraction_functions: Any = { "extract_datetimetz": extract_datetimetz, "extract_email_address": extract_email_address, "extract_ip_address": extract_ip_address, "extract_ip_address_name": extract_ip_address_name, "extract_mapi_id": extract_mapi_id, "extract_ordered_bullets": extract_ordered_bullets, "extract_text_after": extract_text_after, "extract_text_before": extract_text_before, "extract_us_phone_number": extract_us_phone_number, } if extract_type not in extraction_functions: raise ValueError(f"Unsupported extract_type: {extract_type}") return extraction_functions[extract_type](text, **kwargs)
[docs] @staticmethod def stage_elements( elements: List[Any], stage_type: Literal[ 'convert_to_csv', 'convert_to_dataframe', 'convert_to_dict', 'dict_to_elements', 'stage_csv_for_prodigy', 'stage_for_prodigy', 'stage_for_baseplate', 'stage_for_datasaur', 'stage_for_label_box', 'stage_for_label_studio', 'stage_for_weaviate', ], **kwargs, ) -> Union[str, List[Dict], Any]: r"""Stages elements for various platforms based on the specified staging type. This function applies multiple staging utilities to format data for different NLP annotation and machine learning tools. It uses the 'unstructured.staging' module's functions for operations like converting to CSV, DataFrame, dictionary, or formatting for specific platforms like Prodigy, etc. Args: elements (List[Any]): List of Element objects to be staged. stage_type (Literal['convert_to_csv', 'convert_to_dataframe', 'convert_to_dict', 'dict_to_elements', 'stage_csv_for_prodigy', 'stage_for_prodigy', 'stage_for_baseplate', 'stage_for_datasaur', 'stage_for_label_box', 'stage_for_label_studio', 'stage_for_weaviate']): Type of staging to perform. **kwargs: Additional keyword arguments specific to the staging type. Returns: Union[str, List[Dict], Any]: Staged data in the format appropriate for the specified staging type. Raises: ValueError: If the staging type is not supported or a required argument is missing. References: https://unstructured-io.github.io/unstructured/ """ from unstructured.staging import ( base, baseplate, datasaur, label_box, label_studio, prodigy, weaviate, ) staging_functions: Any = { "convert_to_csv": base.convert_to_csv, "convert_to_dataframe": base.convert_to_dataframe, "convert_to_dict": base.convert_to_dict, "dict_to_elements": base.dict_to_elements, "stage_csv_for_prodigy": lambda els, **kw: prodigy.stage_csv_for_prodigy(els, kw.get('metadata', [])), "stage_for_prodigy": lambda els, **kw: prodigy.stage_for_prodigy( els, kw.get('metadata', []) ), "stage_for_baseplate": baseplate.stage_for_baseplate, "stage_for_datasaur": lambda els, **kw: datasaur.stage_for_datasaur(els, kw.get('entities', [])), "stage_for_label_box": lambda els, **kw: label_box.stage_for_label_box(els, **kw), "stage_for_label_studio": lambda els, **kw: label_studio.stage_for_label_studio(els, **kw), "stage_for_weaviate": weaviate.stage_for_weaviate, } if stage_type not in staging_functions: raise ValueError(f"Unsupported stage type: {stage_type}") return staging_functions[stage_type](elements, **kwargs)
[docs] @staticmethod def chunk_elements( elements: List["Element"], chunk_type: str, **kwargs ) -> List["Element"]: r"""Chunks elements by titles. Args: elements (List[Element]): List of Element objects to be chunked. chunk_type (str): Type chunk going to apply. Supported types: 'chunk_by_title'. **kwargs: Additional keyword arguments for chunking. Returns: List[Dict]: List of chunked sections. References: https://unstructured-io.github.io/unstructured/ """ from unstructured.chunking.title import chunk_by_title chunking_functions = { "chunk_by_title": chunk_by_title, } if chunk_type not in chunking_functions: raise ValueError(f"Unsupported chunk type: {chunk_type}") # Format chunks into a list of dictionaries (or your preferred format) return chunking_functions[chunk_type](elements, **kwargs)