Source code for camel.memories.blocks.vectordb_block

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

from typing import List, Optional

from camel.embeddings import BaseEmbedding, OpenAIEmbedding
from camel.memories.base import MemoryBlock
from camel.memories.records import ContextRecord, MemoryRecord
from camel.storages.vectordb_storages import (
    BaseVectorStorage,
    QdrantStorage,
    VectorDBQuery,
    VectorRecord,
)


[docs] class VectorDBBlock(MemoryBlock): r"""An implementation of the :obj:`MemoryBlock` abstract base class for maintaining and retrieving information using vector embeddings within a vector database. Args: storage (Optional[BaseVectorStorage], optional): The storage mechanism for the vector database. Defaults to in-memory :obj:`Qdrant` if not provided. (default: :obj:`None`) embedding (Optional[BaseEmbedding], optional): Embedding mechanism to convert chat messages into vector representations. Defaults to :obj:`OpenAiEmbedding` if not provided. (default: :obj:`None`) """ def __init__( self, storage: Optional[BaseVectorStorage] = None, embedding: Optional[BaseEmbedding] = None, ) -> None: self.embedding = embedding or OpenAIEmbedding() self.vector_dim = self.embedding.get_output_dim() self.storage = storage or QdrantStorage(vector_dim=self.vector_dim)
[docs] def retrieve( self, keyword: str, limit: int = 3, ) -> List[ContextRecord]: r"""Retrieves similar records from the vector database based on the content of the keyword. Args: keyword (str): This string will be converted into a vector representation to query the database. limit (int, optional): The maximum number of similar messages to retrieve. (default: :obj:`3`). Returns: List[ContextRecord]: A list of memory records retrieved from the vector database based on similarity to :obj:`current_state`. """ query_vector = self.embedding.embed(keyword) results = self.storage.query( VectorDBQuery(query_vector=query_vector, top_k=limit) ) return [ ContextRecord( memory_record=MemoryRecord.from_dict(result.record.payload), score=result.similarity, ) for result in results if result.record.payload is not None ]
[docs] def write_records(self, records: List[MemoryRecord]) -> None: """ Converts the provided chat messages into vector representations and writes them to the vector database. Args: records (List[MemoryRecord]): Memory records to be added to the memory. """ v_records = [ VectorRecord( vector=self.embedding.embed(record.message.content), payload=record.to_dict(), id=str(record.uuid), ) for record in records ] self.storage.add(v_records)
[docs] def clear(self) -> None: r"""Removes all records from the vector database memory.""" self.storage.clear()