Source code for camel.messages.base

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import base64
import io
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, Union

import numpy as np
from PIL import Image
from pydantic import BaseModel

from camel.messages import (
    FunctionCallFormatter,
    HermesFunctionFormatter,
    OpenAIAssistantMessage,
    OpenAIMessage,
    OpenAISystemMessage,
    OpenAIUserMessage,
)
from camel.messages.conversion import ShareGPTMessage
from camel.prompts import CodePrompt, TextPrompt
from camel.types import (
    OpenAIBackendRole,
    OpenAIImageType,
    OpenAIVisionDetailType,
    RoleType,
)
from camel.utils import Constants


[docs] @dataclass class BaseMessage: r"""Base class for message objects used in CAMEL chat system. Args: role_name (str): The name of the user or assistant role. role_type (RoleType): The type of role, either :obj:`RoleType. ASSISTANT` or :obj:`RoleType.USER`. meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary for the message. content (str): The content of the message. video_bytes (Optional[bytes]): Optional bytes of a video associated with the message. (default: :obj:`None`) image_list (Optional[List[Image.Image]]): Optional list of PIL Image objects associated with the message. (default: :obj:`None`) image_detail (Literal["auto", "low", "high"]): Detail level of the images associated with the message. (default: :obj:`auto`) video_detail (Literal["auto", "low", "high"]): Detail level of the videos associated with the message. (default: :obj:`low`) parsed: Optional[Union[Type[BaseModel], dict]]: Optional object which is parsed from the content. (default: :obj:`None`) """ role_name: str role_type: RoleType meta_dict: Optional[Dict[str, Any]] content: str video_bytes: Optional[bytes] = None image_list: Optional[List[Image.Image]] = None image_detail: Literal["auto", "low", "high"] = "auto" video_detail: Literal["auto", "low", "high"] = "low" parsed: Optional[Union[Type[BaseModel], dict]] = None
[docs] @classmethod def make_user_message( cls, role_name: str, content: str, meta_dict: Optional[Dict[str, str]] = None, video_bytes: Optional[bytes] = None, image_list: Optional[List[Image.Image]] = None, image_detail: Union[ OpenAIVisionDetailType, str ] = OpenAIVisionDetailType.AUTO, video_detail: Union[ OpenAIVisionDetailType, str ] = OpenAIVisionDetailType.LOW, ) -> "BaseMessage": r"""Create a new user message. Args: role_name (str): The name of the user role. content (str): The content of the message. meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary for the message. video_bytes (Optional[bytes]): Optional bytes of a video associated with the message. image_list (Optional[List[Image.Image]]): Optional list of PIL Image objects associated with the message. image_detail (Union[OpenAIVisionDetailType, str]): Detail level of the images associated with the message. video_detail (Union[OpenAIVisionDetailType, str]): Detail level of the videos associated with the message. Returns: BaseMessage: The new user message. """ return cls( role_name, RoleType.USER, meta_dict, content, video_bytes, image_list, OpenAIVisionDetailType(image_detail).value, OpenAIVisionDetailType(video_detail).value, )
[docs] @classmethod def make_assistant_message( cls, role_name: str, content: str, meta_dict: Optional[Dict[str, str]] = None, video_bytes: Optional[bytes] = None, image_list: Optional[List[Image.Image]] = None, image_detail: Union[ OpenAIVisionDetailType, str ] = OpenAIVisionDetailType.AUTO, video_detail: Union[ OpenAIVisionDetailType, str ] = OpenAIVisionDetailType.LOW, ) -> "BaseMessage": r"""Create a new assistant message. Args: role_name (str): The name of the assistant role. content (str): The content of the message. meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary for the message. video_bytes (Optional[bytes]): Optional bytes of a video associated with the message. image_list (Optional[List[Image.Image]]): Optional list of PIL Image objects associated with the message. image_detail (Union[OpenAIVisionDetailType, str]): Detail level of the images associated with the message. video_detail (Union[OpenAIVisionDetailType, str]): Detail level of the videos associated with the message. Returns: BaseMessage: The new assistant message. """ return cls( role_name, RoleType.ASSISTANT, meta_dict, content, video_bytes, image_list, OpenAIVisionDetailType(image_detail).value, OpenAIVisionDetailType(video_detail).value, )
[docs] def create_new_instance(self, content: str) -> "BaseMessage": r"""Create a new instance of the :obj:`BaseMessage` with updated content. Args: content (str): The new content value. Returns: BaseMessage: The new instance of :obj:`BaseMessage`. """ return self.__class__( role_name=self.role_name, role_type=self.role_type, meta_dict=self.meta_dict, content=content, )
def __add__(self, other: Any) -> Union["BaseMessage", Any]: r"""Addition operator override for :obj:`BaseMessage`. Args: other (Any): The value to be added with. Returns: Union[BaseMessage, Any]: The result of the addition. """ if isinstance(other, BaseMessage): combined_content = self.content.__add__(other.content) elif isinstance(other, str): combined_content = self.content.__add__(other) else: raise TypeError( f"Unsupported operand type(s) for +: '{type(self)}' and " f"'{type(other)}'" ) return self.create_new_instance(combined_content) def __mul__(self, other: Any) -> Union["BaseMessage", Any]: r"""Multiplication operator override for :obj:`BaseMessage`. Args: other (Any): The value to be multiplied with. Returns: Union[BaseMessage, Any]: The result of the multiplication. """ if isinstance(other, int): multiplied_content = self.content.__mul__(other) return self.create_new_instance(multiplied_content) else: raise TypeError( f"Unsupported operand type(s) for *: '{type(self)}' and " f"'{type(other)}'" ) def __len__(self) -> int: r"""Length operator override for :obj:`BaseMessage`. Returns: int: The length of the content. """ return len(self.content) def __contains__(self, item: str) -> bool: r"""Contains operator override for :obj:`BaseMessage`. Args: item (str): The item to check for containment. Returns: bool: :obj:`True` if the item is contained in the content, :obj:`False` otherwise. """ return item in self.content
[docs] def extract_text_and_code_prompts( self, ) -> Tuple[List[TextPrompt], List[CodePrompt]]: r"""Extract text and code prompts from the message content. Returns: Tuple[List[TextPrompt], List[CodePrompt]]: A tuple containing a list of text prompts and a list of code prompts extracted from the content. """ text_prompts: List[TextPrompt] = [] code_prompts: List[CodePrompt] = [] lines = self.content.split("\n") idx = 0 start_idx = 0 while idx < len(lines): while idx < len(lines) and ( not lines[idx].lstrip().startswith("```") ): idx += 1 text = "\n".join(lines[start_idx:idx]).strip() text_prompts.append(TextPrompt(text)) if idx >= len(lines): break code_type = lines[idx].strip()[3:].strip() idx += 1 start_idx = idx while not lines[idx].lstrip().startswith("```"): idx += 1 code = "\n".join(lines[start_idx:idx]).strip() code_prompts.append(CodePrompt(code, code_type=code_type)) idx += 1 start_idx = idx return text_prompts, code_prompts
[docs] @classmethod def from_sharegpt( cls, message: ShareGPTMessage, function_format: Optional[FunctionCallFormatter[Any, Any]] = None, role_mapping=None, ) -> "BaseMessage": r"""Convert ShareGPT message to BaseMessage or FunctionCallingMessage. Note tool calls and responses have an 'assistant' role in CAMEL Args: message (ShareGPTMessage): ShareGPT message to convert. function_format (FunctionCallFormatter, optional): Function call formatter to use. (default: :obj:`HermesFunctionFormatter()`. role_mapping (Dict[str, List[str, RoleType]], optional): Role mapping to use. Defaults to a CAMEL specific mapping. Returns: BaseMessage: Converted message. """ from camel.messages import FunctionCallingMessage if role_mapping is None: role_mapping = { "system": ["system", RoleType.USER], "human": ["user", RoleType.USER], "gpt": ["assistant", RoleType.ASSISTANT], "tool": ["assistant", RoleType.ASSISTANT], } role_name, role_type = role_mapping[message.from_] if function_format is None: function_format = HermesFunctionFormatter() # Check if this is a function-related message if message.from_ == "gpt": func_info = function_format.extract_tool_calls(message.value) if ( func_info and len(func_info) == 1 ): # TODO: Handle multiple tool calls # Including cleaned content is useful to # remind consumers of non-considered content clean_content = re.sub( r"<tool_call>.*?</tool_call>", "", message.value, flags=re.DOTALL, ).strip() return FunctionCallingMessage( role_name=role_name, role_type=role_type, meta_dict=None, content=clean_content, func_name=func_info[0].__dict__["name"], args=func_info[0].__dict__["arguments"], ) elif message.from_ == "tool": func_r_info = function_format.extract_tool_response(message.value) if func_r_info: return FunctionCallingMessage( role_name=role_name, role_type=role_type, meta_dict=None, content="", func_name=func_r_info.__dict__["name"], result=func_r_info.__dict__["content"], ) # Regular message return cls( role_name=role_name, role_type=role_type, meta_dict=None, content=message.value, )
[docs] def to_sharegpt( self, function_format: Optional[FunctionCallFormatter] = None, ) -> ShareGPTMessage: r"""Convert BaseMessage to ShareGPT message Args: function_format (FunctionCallFormatter): Function call formatter to use. Defaults to Hermes. """ if function_format is None: function_format = HermesFunctionFormatter() # Convert role type to ShareGPT 'from' field if self.role_type == RoleType.USER: from_ = "system" if self.role_name == "system" else "human" else: # RoleType.ASSISTANT from_ = "gpt" # Function conversion code in FunctionCallingMessage return ShareGPTMessage(from_=from_, value=self.content) # type: ignore[call-arg]
[docs] def to_openai_message( self, role_at_backend: OpenAIBackendRole, ) -> OpenAIMessage: r"""Converts the message to an :obj:`OpenAIMessage` object. Args: role_at_backend (OpenAIBackendRole): The role of the message in OpenAI chat system. Returns: OpenAIMessage: The converted :obj:`OpenAIMessage` object. """ if role_at_backend == OpenAIBackendRole.SYSTEM: return self.to_openai_system_message() elif role_at_backend == OpenAIBackendRole.USER: return self.to_openai_user_message() elif role_at_backend == OpenAIBackendRole.ASSISTANT: return self.to_openai_assistant_message() else: raise ValueError(f"Unsupported role: {role_at_backend}.")
[docs] def to_openai_system_message(self) -> OpenAISystemMessage: r"""Converts the message to an :obj:`OpenAISystemMessage` object. Returns: OpenAISystemMessage: The converted :obj:`OpenAISystemMessage` object. """ return {"role": "system", "content": self.content}
[docs] def to_openai_user_message(self) -> OpenAIUserMessage: r"""Converts the message to an :obj:`OpenAIUserMessage` object. Returns: OpenAIUserMessage: The converted :obj:`OpenAIUserMessage` object. """ hybird_content: List[Any] = [] hybird_content.append( { "type": "text", "text": self.content, } ) if self.image_list and len(self.image_list) > 0: for image in self.image_list: if image.format is None: raise ValueError( f"Image's `format` is `None`, please " f"transform the `PIL.Image.Image` to one of " f"following supported formats, such as " f"{list(OpenAIImageType)}" ) image_type: str = image.format.lower() if image_type not in OpenAIImageType: raise ValueError( f"Image type {image.format} " f"is not supported by OpenAI vision model" ) with io.BytesIO() as buffer: image.save(fp=buffer, format=image.format) encoded_image = base64.b64encode(buffer.getvalue()).decode( "utf-8" ) image_prefix = f"data:image/{image_type};base64," hybird_content.append( { "type": "image_url", "image_url": { "url": f"{image_prefix}{encoded_image}", "detail": self.image_detail, }, } ) if self.video_bytes: import imageio.v3 as iio base64Frames: List[str] = [] frame_count = 0 # read video bytes video = iio.imiter( self.video_bytes, plugin=Constants.VIDEO_DEFAULT_PLUG_PYAV ) for frame in video: frame_count += 1 if ( frame_count % Constants.VIDEO_IMAGE_EXTRACTION_INTERVAL == 0 ): # convert frame to numpy array frame_array = np.asarray(frame) frame_image = Image.fromarray(frame_array) # Get the dimensions of the frame width, height = frame_image.size # resize the frame to the default image size new_width = Constants.VIDEO_DEFAULT_IMAGE_SIZE aspect_ratio = width / height new_height = int(new_width / aspect_ratio) resized_img = frame_image.resize((new_width, new_height)) # encode the image to base64 with io.BytesIO() as buffer: image_format = OpenAIImageType.JPEG.value image_format = image_format.upper() resized_img.save(fp=buffer, format=image_format) encoded_image = base64.b64encode( buffer.getvalue() ).decode("utf-8") base64Frames.append(encoded_image) for encoded_image in base64Frames: item = { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encoded_image}", "detail": self.video_detail, }, } hybird_content.append(item) if len(hybird_content) > 1: return { "role": "user", "content": hybird_content, } # This return just for str message else: return { "role": "user", "content": self.content, }
[docs] def to_openai_assistant_message(self) -> OpenAIAssistantMessage: r"""Converts the message to an :obj:`OpenAIAssistantMessage` object. Returns: OpenAIAssistantMessage: The converted :obj:`OpenAIAssistantMessage` object. """ return {"role": "assistant", "content": self.content}
[docs] def to_dict(self) -> Dict: r"""Converts the message to a dictionary. Returns: dict: The converted dictionary. """ return { "role_name": self.role_name, "role_type": self.role_type.name, **(self.meta_dict or {}), "content": self.content, }