# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import base64
import io
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, Union
import numpy as np
from PIL import Image
from pydantic import BaseModel
from camel.messages import (
FunctionCallFormatter,
HermesFunctionFormatter,
OpenAIAssistantMessage,
OpenAIMessage,
OpenAISystemMessage,
OpenAIUserMessage,
)
from camel.messages.conversion import ShareGPTMessage
from camel.prompts import CodePrompt, TextPrompt
from camel.types import (
OpenAIBackendRole,
OpenAIImageType,
OpenAIVisionDetailType,
RoleType,
)
from camel.utils import Constants
[docs]
@dataclass
class BaseMessage:
r"""Base class for message objects used in CAMEL chat system.
Args:
role_name (str): The name of the user or assistant role.
role_type (RoleType): The type of role, either :obj:`RoleType.
ASSISTANT` or :obj:`RoleType.USER`.
meta_dict (Optional[Dict[str, str]]): Additional metadata dictionary
for the message.
content (str): The content of the message.
video_bytes (Optional[bytes]): Optional bytes of a video associated
with the message. (default: :obj:`None`)
image_list (Optional[List[Image.Image]]): Optional list of PIL Image
objects associated with the message. (default: :obj:`None`)
image_detail (Literal["auto", "low", "high"]): Detail level of the
images associated with the message. (default: :obj:`auto`)
video_detail (Literal["auto", "low", "high"]): Detail level of the
videos associated with the message. (default: :obj:`low`)
parsed: Optional[Union[Type[BaseModel], dict]]: Optional object which
is parsed from the content. (default: :obj:`None`)
"""
role_name: str
role_type: RoleType
meta_dict: Optional[Dict[str, Any]]
content: str
video_bytes: Optional[bytes] = None
image_list: Optional[List[Image.Image]] = None
image_detail: Literal["auto", "low", "high"] = "auto"
video_detail: Literal["auto", "low", "high"] = "low"
parsed: Optional[Union[Type[BaseModel], dict]] = None
[docs]
@classmethod
def make_user_message(
cls,
role_name: str,
content: str,
meta_dict: Optional[Dict[str, str]] = None,
video_bytes: Optional[bytes] = None,
image_list: Optional[List[Image.Image]] = None,
image_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.AUTO,
video_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.LOW,
) -> "BaseMessage":
r"""Create a new user message.
Args:
role_name (str): The name of the user role.
content (str): The content of the message.
meta_dict (Optional[Dict[str, str]]): Additional metadata
dictionary for the message.
video_bytes (Optional[bytes]): Optional bytes of a video
associated with the message.
image_list (Optional[List[Image.Image]]): Optional list of PIL
Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the videos associated with the message.
Returns:
BaseMessage: The new user message.
"""
return cls(
role_name,
RoleType.USER,
meta_dict,
content,
video_bytes,
image_list,
OpenAIVisionDetailType(image_detail).value,
OpenAIVisionDetailType(video_detail).value,
)
[docs]
@classmethod
def make_assistant_message(
cls,
role_name: str,
content: str,
meta_dict: Optional[Dict[str, str]] = None,
video_bytes: Optional[bytes] = None,
image_list: Optional[List[Image.Image]] = None,
image_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.AUTO,
video_detail: Union[
OpenAIVisionDetailType, str
] = OpenAIVisionDetailType.LOW,
) -> "BaseMessage":
r"""Create a new assistant message.
Args:
role_name (str): The name of the assistant role.
content (str): The content of the message.
meta_dict (Optional[Dict[str, str]]): Additional metadata
dictionary for the message.
video_bytes (Optional[bytes]): Optional bytes of a video
associated with the message.
image_list (Optional[List[Image.Image]]): Optional list of PIL
Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]): Detail level of
the videos associated with the message.
Returns:
BaseMessage: The new assistant message.
"""
return cls(
role_name,
RoleType.ASSISTANT,
meta_dict,
content,
video_bytes,
image_list,
OpenAIVisionDetailType(image_detail).value,
OpenAIVisionDetailType(video_detail).value,
)
[docs]
def create_new_instance(self, content: str) -> "BaseMessage":
r"""Create a new instance of the :obj:`BaseMessage` with updated
content.
Args:
content (str): The new content value.
Returns:
BaseMessage: The new instance of :obj:`BaseMessage`.
"""
return self.__class__(
role_name=self.role_name,
role_type=self.role_type,
meta_dict=self.meta_dict,
content=content,
)
def __add__(self, other: Any) -> Union["BaseMessage", Any]:
r"""Addition operator override for :obj:`BaseMessage`.
Args:
other (Any): The value to be added with.
Returns:
Union[BaseMessage, Any]: The result of the addition.
"""
if isinstance(other, BaseMessage):
combined_content = self.content.__add__(other.content)
elif isinstance(other, str):
combined_content = self.content.__add__(other)
else:
raise TypeError(
f"Unsupported operand type(s) for +: '{type(self)}' and "
f"'{type(other)}'"
)
return self.create_new_instance(combined_content)
def __mul__(self, other: Any) -> Union["BaseMessage", Any]:
r"""Multiplication operator override for :obj:`BaseMessage`.
Args:
other (Any): The value to be multiplied with.
Returns:
Union[BaseMessage, Any]: The result of the multiplication.
"""
if isinstance(other, int):
multiplied_content = self.content.__mul__(other)
return self.create_new_instance(multiplied_content)
else:
raise TypeError(
f"Unsupported operand type(s) for *: '{type(self)}' and "
f"'{type(other)}'"
)
def __len__(self) -> int:
r"""Length operator override for :obj:`BaseMessage`.
Returns:
int: The length of the content.
"""
return len(self.content)
def __contains__(self, item: str) -> bool:
r"""Contains operator override for :obj:`BaseMessage`.
Args:
item (str): The item to check for containment.
Returns:
bool: :obj:`True` if the item is contained in the content,
:obj:`False` otherwise.
"""
return item in self.content
[docs]
def extract_text_and_code_prompts(
self,
) -> Tuple[List[TextPrompt], List[CodePrompt]]:
r"""Extract text and code prompts from the message content.
Returns:
Tuple[List[TextPrompt], List[CodePrompt]]: A tuple containing a
list of text prompts and a list of code prompts extracted
from the content.
"""
text_prompts: List[TextPrompt] = []
code_prompts: List[CodePrompt] = []
lines = self.content.split("\n")
idx = 0
start_idx = 0
while idx < len(lines):
while idx < len(lines) and (
not lines[idx].lstrip().startswith("```")
):
idx += 1
text = "\n".join(lines[start_idx:idx]).strip()
text_prompts.append(TextPrompt(text))
if idx >= len(lines):
break
code_type = lines[idx].strip()[3:].strip()
idx += 1
start_idx = idx
while not lines[idx].lstrip().startswith("```"):
idx += 1
code = "\n".join(lines[start_idx:idx]).strip()
code_prompts.append(CodePrompt(code, code_type=code_type))
idx += 1
start_idx = idx
return text_prompts, code_prompts
[docs]
@classmethod
def from_sharegpt(
cls,
message: ShareGPTMessage,
function_format: Optional[FunctionCallFormatter[Any, Any]] = None,
role_mapping=None,
) -> "BaseMessage":
r"""Convert ShareGPT message to BaseMessage or FunctionCallingMessage.
Note tool calls and responses have an 'assistant' role in CAMEL
Args:
message (ShareGPTMessage): ShareGPT message to convert.
function_format (FunctionCallFormatter, optional): Function call
formatter to use. (default: :obj:`HermesFunctionFormatter()`.
role_mapping (Dict[str, List[str, RoleType]], optional): Role
mapping to use. Defaults to a CAMEL specific mapping.
Returns:
BaseMessage: Converted message.
"""
from camel.messages import FunctionCallingMessage
if role_mapping is None:
role_mapping = {
"system": ["system", RoleType.USER],
"human": ["user", RoleType.USER],
"gpt": ["assistant", RoleType.ASSISTANT],
"tool": ["assistant", RoleType.ASSISTANT],
}
role_name, role_type = role_mapping[message.from_]
if function_format is None:
function_format = HermesFunctionFormatter()
# Check if this is a function-related message
if message.from_ == "gpt":
func_info = function_format.extract_tool_calls(message.value)
if (
func_info and len(func_info) == 1
): # TODO: Handle multiple tool calls
# Including cleaned content is useful to
# remind consumers of non-considered content
clean_content = re.sub(
r"<tool_call>.*?</tool_call>",
"",
message.value,
flags=re.DOTALL,
).strip()
return FunctionCallingMessage(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content=clean_content,
func_name=func_info[0].__dict__["name"],
args=func_info[0].__dict__["arguments"],
)
elif message.from_ == "tool":
func_r_info = function_format.extract_tool_response(message.value)
if func_r_info:
return FunctionCallingMessage(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content="",
func_name=func_r_info.__dict__["name"],
result=func_r_info.__dict__["content"],
)
# Regular message
return cls(
role_name=role_name,
role_type=role_type,
meta_dict=None,
content=message.value,
)
[docs]
def to_sharegpt(
self,
function_format: Optional[FunctionCallFormatter] = None,
) -> ShareGPTMessage:
r"""Convert BaseMessage to ShareGPT message
Args:
function_format (FunctionCallFormatter): Function call formatter
to use. Defaults to Hermes.
"""
if function_format is None:
function_format = HermesFunctionFormatter()
# Convert role type to ShareGPT 'from' field
if self.role_type == RoleType.USER:
from_ = "system" if self.role_name == "system" else "human"
else: # RoleType.ASSISTANT
from_ = "gpt"
# Function conversion code in FunctionCallingMessage
return ShareGPTMessage(from_=from_, value=self.content) # type: ignore[call-arg]
[docs]
def to_openai_message(
self,
role_at_backend: OpenAIBackendRole,
) -> OpenAIMessage:
r"""Converts the message to an :obj:`OpenAIMessage` object.
Args:
role_at_backend (OpenAIBackendRole): The role of the message in
OpenAI chat system.
Returns:
OpenAIMessage: The converted :obj:`OpenAIMessage` object.
"""
if role_at_backend == OpenAIBackendRole.SYSTEM:
return self.to_openai_system_message()
elif role_at_backend == OpenAIBackendRole.USER:
return self.to_openai_user_message()
elif role_at_backend == OpenAIBackendRole.ASSISTANT:
return self.to_openai_assistant_message()
else:
raise ValueError(f"Unsupported role: {role_at_backend}.")
[docs]
def to_openai_system_message(self) -> OpenAISystemMessage:
r"""Converts the message to an :obj:`OpenAISystemMessage` object.
Returns:
OpenAISystemMessage: The converted :obj:`OpenAISystemMessage`
object.
"""
return {"role": "system", "content": self.content}
[docs]
def to_openai_user_message(self) -> OpenAIUserMessage:
r"""Converts the message to an :obj:`OpenAIUserMessage` object.
Returns:
OpenAIUserMessage: The converted :obj:`OpenAIUserMessage` object.
"""
hybird_content: List[Any] = []
hybird_content.append(
{
"type": "text",
"text": self.content,
}
)
if self.image_list and len(self.image_list) > 0:
for image in self.image_list:
if image.format is None:
raise ValueError(
f"Image's `format` is `None`, please "
f"transform the `PIL.Image.Image` to one of "
f"following supported formats, such as "
f"{list(OpenAIImageType)}"
)
image_type: str = image.format.lower()
if image_type not in OpenAIImageType:
raise ValueError(
f"Image type {image.format} "
f"is not supported by OpenAI vision model"
)
with io.BytesIO() as buffer:
image.save(fp=buffer, format=image.format)
encoded_image = base64.b64encode(buffer.getvalue()).decode(
"utf-8"
)
image_prefix = f"data:image/{image_type};base64,"
hybird_content.append(
{
"type": "image_url",
"image_url": {
"url": f"{image_prefix}{encoded_image}",
"detail": self.image_detail,
},
}
)
if self.video_bytes:
import imageio.v3 as iio
base64Frames: List[str] = []
frame_count = 0
# read video bytes
video = iio.imiter(
self.video_bytes, plugin=Constants.VIDEO_DEFAULT_PLUG_PYAV
)
for frame in video:
frame_count += 1
if (
frame_count % Constants.VIDEO_IMAGE_EXTRACTION_INTERVAL
== 0
):
# convert frame to numpy array
frame_array = np.asarray(frame)
frame_image = Image.fromarray(frame_array)
# Get the dimensions of the frame
width, height = frame_image.size
# resize the frame to the default image size
new_width = Constants.VIDEO_DEFAULT_IMAGE_SIZE
aspect_ratio = width / height
new_height = int(new_width / aspect_ratio)
resized_img = frame_image.resize((new_width, new_height))
# encode the image to base64
with io.BytesIO() as buffer:
image_format = OpenAIImageType.JPEG.value
image_format = image_format.upper()
resized_img.save(fp=buffer, format=image_format)
encoded_image = base64.b64encode(
buffer.getvalue()
).decode("utf-8")
base64Frames.append(encoded_image)
for encoded_image in base64Frames:
item = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}",
"detail": self.video_detail,
},
}
hybird_content.append(item)
if len(hybird_content) > 1:
return {
"role": "user",
"content": hybird_content,
}
# This return just for str message
else:
return {
"role": "user",
"content": self.content,
}
[docs]
def to_openai_assistant_message(self) -> OpenAIAssistantMessage:
r"""Converts the message to an :obj:`OpenAIAssistantMessage` object.
Returns:
OpenAIAssistantMessage: The converted :obj:`OpenAIAssistantMessage`
object.
"""
return {"role": "assistant", "content": self.content}
[docs]
def to_dict(self) -> Dict:
r"""Converts the message to a dictionary.
Returns:
dict: The converted dictionary.
"""
return {
"role_name": self.role_name,
"role_type": self.role_type.name,
**(self.meta_dict or {}),
"content": self.content,
}