Source code for camel.models.aiml_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Any, Dict, List, Optional, Type, Union

from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
from pydantic import BaseModel

from camel.configs import AIML_API_PARAMS, AIMLConfig
from camel.messages import OpenAIMessage
from camel.models._utils import try_modify_message_with_format
from camel.models.base_model import BaseModelBackend
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
    api_keys_required,
)


[docs] class AIMLModel(BaseModelBackend): r"""AIML API in a unified BaseModelBackend interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into OpenAI client. If :obj:`None`, :obj:`AIMLConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the AIML service. (default: :obj:`None`) url (Optional[str], optional): The URL to the AIML service. If not provided, :obj:`https://api.aimlapi.com/v1` will be used. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter( ModelType.GPT_4O_MINI)` will be used. (default: :obj:`None`) """ @api_keys_required([("api_key", "AIML_API_KEY")]) def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: if model_config_dict is None: model_config_dict = AIMLConfig().as_dict() api_key = api_key or os.environ.get("AIML_API_KEY") url = url or os.environ.get( "AIML_API_BASE_URL", "https://api.aimlapi.com/v1", ) super().__init__( model_type, model_config_dict, api_key, url, token_counter ) self._client = OpenAI( timeout=180, max_retries=3, api_key=self._api_key, base_url=self._url, ) self._async_client = AsyncOpenAI( timeout=180, max_retries=3, api_key=self._api_key, base_url=self._url, ) def _prepare_request( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Dict[str, Any]: request_config = self.model_config_dict.copy() if tools: request_config["tools"] = tools if response_format: # AIML API does not natively support response format try_modify_message_with_format(messages[-1], response_format) return request_config def _run( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Runs inference of AIML chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: Union[ChatCompletion, Stream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `Stream[ChatCompletionChunk]` in the stream mode. """ request_config = self._prepare_request( messages, response_format, tools ) response = self._client.chat.completions.create( messages=messages, model=self.model_type, **request_config ) return response async def _arun( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: request_config = self._prepare_request( messages, response_format, tools ) response = await self._async_client.chat.completions.create( messages=messages, model=self.model_type, **request_config ) return response @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI) return self._token_counter
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to AIML API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to AIML API. """ for param in self.model_config_dict: if param not in AIML_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into AIML model backend." )
@property def stream(self) -> bool: """Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return self.model_config_dict.get("stream", False)