Source code for camel.models.base_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union

from openai import Stream

from camel.messages import OpenAIMessage
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
    ParsedChatCompletion,
    UnifiedModelType,
)
from camel.utils import BaseTokenCounter


[docs] class BaseModelBackend(ABC): r"""Base class for different model backends. It may be OpenAI API, a local LLM, a stub for unit tests, etc. Args: model_type (Union[ModelType, str]): Model for which a backend is created. model_config_dict (Optional[Dict[str, Any]], optional): A config dictionary. (default: :obj:`{}`) api_key (Optional[str], optional): The API key for authenticating with the model service. (default: :obj:`None`) url (Optional[str], optional): The url to the model service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) """ def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: self.model_type: UnifiedModelType = UnifiedModelType(model_type) if model_config_dict is None: model_config_dict = {} self.model_config_dict = model_config_dict self._api_key = api_key self._url = url self._token_counter = token_counter self.check_model_config() @property @abstractmethod def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ pass
[docs] @abstractmethod def run( self, messages: List[OpenAIMessage], ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Runs the query to the backend model. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: Union[ChatCompletion, Stream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `Stream[ChatCompletionChunk]` in the stream mode. """ pass
[docs] @abstractmethod def check_model_config(self): r"""Check whether the input model configuration contains unexpected arguments Raises: ValueError: If the model configuration dictionary contains any unexpected argument for this model class. """ pass
[docs] def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count the number of tokens in the messages using the specific tokenizer. Args: messages (List[Dict]): message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ return self.token_counter.count_tokens_from_messages(messages)
def _to_chat_completion( self, response: ParsedChatCompletion ) -> ChatCompletion: if len(response.choices) > 1: print("Warning: Multiple response choices detected") choice = dict( index=response.choices[0].index, message={ "role": response.choices[0].message.role, "content": response.choices[0].message.content, "tool_calls": response.choices[0].message.tool_calls, "parsed": response.choices[0].message.parsed, }, finish_reason=response.choices[0].finish_reason, ) obj = ChatCompletion.construct( id=response.id, choices=[choice], created=response.created, model=response.model, object="chat.completion", usage=response.usage, ) return obj @property def token_limit(self) -> int: r"""Returns the maximum token limit for a given model. This method retrieves the maximum token limit either from the `model_config_dict` or from the model's default token limit. Returns: int: The maximum token limit for the given model. """ return ( self.model_config_dict.get("max_tokens") or self.model_type.token_limit ) @property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return False