Source code for camel.models.internlm_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

import os
from typing import Any, Dict, List, Optional, Type, Union

from openai import AsyncStream
from pydantic import BaseModel

from camel.configs import INTERNLM_API_PARAMS, InternLMConfig
from camel.messages import OpenAIMessage
from camel.models.openai_compatible_model import OpenAICompatibleModel
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import (
    BaseTokenCounter,
    api_keys_required,
)


[docs] class InternLMModel(OpenAICompatibleModel): r"""InternLM API in a unified OpenAICompatibleModel interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created, one of InternLM series. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`openai.ChatCompletion.create()`. If :obj:`None`, :obj:`InternLMConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the InternLM service. (default: :obj:`None`) url (Optional[str], optional): The url to the InternLM service. (default: :obj:`https://internlm-chat.intern-ai.org.cn/puyu/api/v1`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter( ModelType.GPT_4O_MINI)` will be used. (default: :obj:`None`) timeout (Optional[float], optional): The timeout value in seconds for API calls. If not provided, will fall back to the MODEL_TIMEOUT environment variable or default to 180 seconds. (default: :obj:`None`) """ @api_keys_required( [ ("api_key", "INTERNLM_API_KEY"), ] ) def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, timeout: Optional[float] = None, ) -> None: self.model_config = model_config_dict or InternLMConfig().as_dict() api_key = api_key or os.environ.get("INTERNLM_API_KEY") url = url or os.environ.get( "INTERNLM_API_BASE_URL", "https://internlm-chat.intern-ai.org.cn/puyu/api/v1", ) timeout = timeout or float(os.environ.get("MODEL_TIMEOUT", 180)) super().__init__( model_type=model_type, model_config_dict=self.model_config, api_key=api_key, url=url, token_counter=token_counter, timeout=timeout, ) async def _arun( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: raise NotImplementedError("InternLM does not support async inference.")
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to InternLM API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to InternLM API. """ for param in self.model_config_dict: if param not in INTERNLM_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into InternLM model backend." )