Source code for camel.models.litellm_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Dict, List, Optional, Union

from camel.configs import LITELLM_API_PARAMS, LiteLLMConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    LiteLLMTokenCounter,
    dependencies_required,
)


[docs] class LiteLLMModel(BaseModelBackend): r"""Constructor for LiteLLM backend with OpenAI compatibility. Args: model_type (Union[ModelType, str]): Model for which a backend is created, such as GPT-3.5-turbo, Claude-2, etc. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`openai.ChatCompletion.create()`. If:obj:`None`, :obj:`LiteLLMConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the model service. (default: :obj:`None`) url (Optional[str], optional): The url to the model service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`LiteLLMTokenCounter` will be used. (default: :obj:`None`) """ # NOTE: Currently stream mode is not supported. @dependencies_required('litellm') def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: from litellm import completion if model_config_dict is None: model_config_dict = LiteLLMConfig().as_dict() super().__init__( model_type, model_config_dict, api_key, url, token_counter ) self.client = completion def _convert_response_from_litellm_to_openai( self, response ) -> ChatCompletion: r"""Converts a response from the LiteLLM format to the OpenAI format. Parameters: response (LiteLLMResponse): The response object from LiteLLM. Returns: ChatCompletion: The response object in OpenAI's format. """ return ChatCompletion.construct( id=response.id, choices=[ { "index": response.choices[0].index, "message": { "role": response.choices[0].message.role, "content": response.choices[0].message.content, }, "finish_reason": response.choices[0].finish_reason, } ], created=response.created, model=response.model, object=response.object, system_fingerprint=response.system_fingerprint, usage=response.usage, ) @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = LiteLLMTokenCounter(self.model_type) return self._token_counter
[docs] def run( self, messages: List[OpenAIMessage], ) -> ChatCompletion: r"""Runs inference of LiteLLM chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI format. Returns: ChatCompletion """ response = self.client( api_key=self._api_key, base_url=self._url, model=self.model_type, messages=messages, **self.model_config_dict, ) response = self._convert_response_from_litellm_to_openai(response) return response
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to LiteLLM API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments. """ for param in self.model_config_dict: if param not in LITELLM_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into LiteLLM model backend." )