Source code for camel.models.reward.evaluator

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Dict, List

from camel.models.reward import BaseRewardModel


[docs] class Evaluator: r"""Evaluator class to evaluate messages using a reward model and filter data based on the scores. Args: reward_model (BaseRewardModel): A reward model to evaluate messages. """ def __init__(self, reward_model: BaseRewardModel): self.reward_model = reward_model
[docs] def evaluate(self, messages: List[Dict[str, str]]) -> Dict[str, float]: r"""Evaluate the messages using the reward model. Args: messages (List[Dict[str, str]]): A list of messages where each message is a dictionary with 'role' and 'content'. Returns: Dict[str, float]: A dictionary mapping score types to their values. """ scores = self.reward_model.evaluate(messages) return scores
[docs] def filter_data( self, messages: List[Dict[str, str]], thresholds: Dict[str, float] ) -> bool: r"""Filter messages based on the scores. Args: messages (List[Dict[str, str]]): A list of messages where each message is a dictionary with 'role' and 'content'. thresholds (Dict[str, float]): A dictionary mapping score types to their values. Returns: bool: A boolean indicating whether the messages pass the filter. """ scores = self.evaluate(messages) for score_type, threshold in thresholds.items(): if score_type not in scores: raise ValueError(f"Score type {score_type} not found.") if scores.get(score_type, 0) < threshold: return False return True