Source code for camel.personas.persona_hub

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import re
import uuid
from functools import lru_cache
from typing import Dict, List, Literal, Optional, Union

import numpy as np
from pydantic import BaseModel, Field

from camel.agents import ChatAgent
from camel.embeddings import BaseEmbedding
from camel.models import BaseModelBackend
from camel.personas import Persona
from camel.prompts import TextPrompt


# Set structured output schema
[docs] class PersonaResponse(BaseModel): persona_name: str = Field(description="The name of the persona") persona_description: str = Field( description="The description of the persona." )
[docs] class PersonaHub: r"""The PersonaHub adapted from `"Scaling Synthetic Data Creation with 1, 000,000,000 Personas" <https://github.com/tencent-ailab/persona-hub>`_. PersonaHub proposes a novel persona-driven data synthesis methodology that leverages various perspectives within a large language model (LLM) to create diverse synthetic data. By showcasing PersonaHub's use cases in synthesizing high-quality mathematical and logical reasoning problems, instructions (i.e., user prompts), knowledge-rich texts, game NPCs and tools (functions) at scale, the authors demonstrate persona-driven data synthesis is versatile, scalable, flexible, and easy to use, potentially driving a paradigm shift in synthetic data creation and applications in practice, which may have a profound impact on LLM research and development. Please refer to the paper for more details: https://arxiv.org/pdf/2406.20094. Args: model (BaseModelBackend, optional): The model to use for persona generation and manipulation. (default: :obj:`None`) """ def __init__( self, model: Optional[BaseModelBackend] = None, ): self.model = model self.personas: Dict[uuid.UUID, Persona] = {} def __setitem__(self, persona: Persona): r"""Add a persona to the group. Args: persona (Persona): The persona to add. """ self.personas[persona.id] = persona def __delitem__(self, persona_id: uuid.UUID): r"""Remove a persona from the group by ID. Args: persona_id (uuid.UUID): The ID of the persona to remove. """ if persona_id in self.personas: del self.personas[persona_id] else: raise KeyError("Persona ID not found.") def __getitem__(self, persona_id: uuid.UUID) -> Persona: r"""Get a persona by ID. Args: persona_id (uuid.UUID): The ID of the persona to retrieve. """ if persona_id in self.personas: return self.personas[persona_id] else: raise KeyError("Persona ID not found.")
[docs] def text_to_persona( self, text: str, action: Literal["read", "write", "like", "dislike"] = "read", ) -> Persona: r"""Infers a specific persona who is likely to [read|write|like|dislike |...] the given text. Args: text (str): The input text for which to infer a persona. action (str): The action associated with the persona (default is "read"). Returns: Persona: The inferred persona. """ persona = Persona() text_to_persona_prompt: Union[TextPrompt, str] = ( persona.text_to_persona_prompt ) text_to_persona_prompt_instruction = text_to_persona_prompt.format( action=action, text=text ) # Set Agent to generate personal t2p_agent = ChatAgent( system_message="You are a helpful assistant", model=self.model ) t2p_agent.reset() # Get output from agent try: response = t2p_agent.step( text_to_persona_prompt_instruction, response_format=PersonaResponse, # type: ignore[arg-type] ) parsed_content = json.loads(response.msg.content) persona.name = parsed_content["persona_name"] persona.description = parsed_content["persona_description"] except Exception as e: raise RuntimeError(f"Text to persona step failed: {e}") return persona
[docs] def persona_to_persona(self, persona: Persona) -> Dict[uuid.UUID, Persona]: r"""Derives additional personas based on interpersonal relationships from this persona. Args: persona (Persona): The persona from which to derive related personas. Returns: Dict[uuid.UUID, Persona]: A dictionary of related personas. """ persona_to_persona_prompt: Union[TextPrompt, str] = ( persona.persona_to_persona_prompt ) answer_template = """ You MUST answer the question according to the format of the ANSWER TEMPLATE, and you can only modify the content within <BLANK>. ===== ANSWER TEMPLATE ===== 1. persona_name: <BLANK> persona_description: <BLANK> ... n. persona_name: <BLANK> persona_description: <BLANK> """ # noqa: E501 persona_to_persona_prompt_instruction = ( persona_to_persona_prompt.format( persona_name=persona.name, persona_description=persona.description, ) + answer_template ) p2p_agent = ChatAgent( system_message="You're a helpful assistant.", model=self.model ) p2p_agent.reset() # Get output from agent try: response = p2p_agent.step( persona_to_persona_prompt_instruction # type: ignore[arg-type] ) # Structured output (TODO: Use a more robust parser) pattern = r"(\d+)\.\s*persona_name:\s*(.*?)\s*persona_description:\s*(.*?)\s*(?=\d+\.|$)" # noqa: E501 matches = re.findall(pattern, response.msg.content, re.DOTALL) personas: Dict[uuid.UUID, Persona] = {} for match in matches: name = match[1].strip() description = match[2].strip() new_persona = Persona(name=name, description=description) personas[new_persona.id] = new_persona except Exception as e: raise RuntimeError(f"Persona to persona step failed: {e}") return personas
[docs] def deduplicate( self, embedding_model: Optional[BaseEmbedding] = None, similarity_threshold: float = 0.85, ) -> None: r"""Remove similar personas from the group. Args: embedding_model (BaseEmbedding): The embedding model for similarity compairsion. (default is `None`). similarity_threshold (float): The similarity threshold for deduplication (default is `0.85`). """ # Changed to default similarity threshold to 0.85 as the default # text-embedding-3-small model may give lower similarities than others # This is a simplified version. Need to implement a more # sophisticated deduplication algorithm as described in the paper. if not embedding_model: from camel.embeddings import OpenAIEmbedding embedding_model = OpenAIEmbedding() unique_personas: Dict[uuid.UUID, Persona] = {} for persona_id, persona in self.personas.items(): if not any( self._is_similar( persona, up, similarity_threshold, embedding_model ) for up in unique_personas.values() ): unique_personas[persona_id] = persona self.personas = unique_personas
@staticmethod @lru_cache(maxsize=128) def _get_embedding( embedding_model: BaseEmbedding, description: Optional[str] ) -> list[float]: r"""Cache embeddings to reduce recomputation.""" return embedding_model.embed(description) @staticmethod def _cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float: r"""Copmute the cosine similarity of two vectors. Args: vec1 (np.ndarray): Vector 1 vec2 (np.ndarray): Vector 2 """ return np.dot(vec1, vec2) / ( np.linalg.norm(vec1) * np.linalg.norm(vec2) ) def _is_similar( self, persona1: Persona, persona2: Persona, similarity_threshold: float, embedding_model: BaseEmbedding, ) -> bool: r"""Check if two personas are similar by consine similarity of the embeddings of their descriptions. Args: persona1 (Persona1): A persona. persona2 (Persona2): The other persona. similarity_threshold (float): The threshold on consine similarity to determine whether the two personas are similar. embedding_model (BaseEmbedding): The embedding model for similarity compairsion. """ # Ensure persona descriptions are not None persona1_description = persona1.description or "" persona2_description = persona2.description or "" persona1_embeddings = self._get_embedding( embedding_model, persona1_description ) persona2_embeddings = self._get_embedding( embedding_model, persona2_description ) similarity = self._cosine_similarity( np.array(persona1_embeddings), np.array(persona2_embeddings) ) return similarity >= similarity_threshold def __len__(self): return len(self.personas) def __iter__(self): return iter(self.personas.values())
[docs] def get_all_personas(self) -> List[Persona]: r"""Return a list of all personas.""" return list(self.personas.values())