Source code for camel.retrievers.vector_retriever

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import os
import warnings
from typing import Any, Dict, List, Optional, Union
from urllib.parse import urlparse

from camel.embeddings import BaseEmbedding, OpenAIEmbedding
from camel.loaders import UnstructuredIO
from camel.retrievers.base import BaseRetriever
from camel.storages import (
    BaseVectorStorage,
    QdrantStorage,
    VectorDBQuery,
    VectorRecord,
)
from camel.utils import Constants

try:
    from unstructured.documents.elements import Element
except ImportError:
    Element = None


[docs] class VectorRetriever(BaseRetriever): r"""An implementation of the `BaseRetriever` by using vector storage and embedding model. This class facilitates the retriever of relevant information using a query-based approach, backed by vector embeddings. Attributes: embedding_model (BaseEmbedding): Embedding model used to generate vector embeddings. storage (BaseVectorStorage): Vector storage to query. unstructured_modules (UnstructuredIO): A module for parsing files and URLs and chunking content based on specified parameters. """ def __init__( self, embedding_model: Optional[BaseEmbedding] = None, storage: Optional[BaseVectorStorage] = None, ) -> None: r"""Initializes the retriever class with an optional embedding model. Args: embedding_model (Optional[BaseEmbedding]): The embedding model instance. Defaults to `OpenAIEmbedding` if not provided. storage (BaseVectorStorage): Vector storage to query. """ self.embedding_model = embedding_model or OpenAIEmbedding() self.storage = ( storage if storage is not None else QdrantStorage( vector_dim=self.embedding_model.get_output_dim() ) ) self.uio: UnstructuredIO = UnstructuredIO()
[docs] def process( self, content: Union[str, Element], chunk_type: str = "chunk_by_title", max_characters: int = 500, **kwargs: Any, ) -> None: r"""Processes content from a file or URL, divides it into chunks by using `Unstructured IO`, and stores their embeddings in the specified vector storage. Args: content (Union[str, Element]): Local file path, remote URL, string content or Element object. chunk_type (str): Type of chunking going to apply. Defaults to "chunk_by_title". max_characters (int): Max number of characters in each chunk. Defaults to `500`. **kwargs (Any): Additional keyword arguments for content parsing. """ if isinstance(content, Element): elements = [content] else: # Check if the content is URL parsed_url = urlparse(content) is_url = all([parsed_url.scheme, parsed_url.netloc]) if is_url or os.path.exists(content): elements = self.uio.parse_file_or_url(content, **kwargs) or [] else: elements = [self.uio.create_element_from_text(text=content)] if elements: chunks = self.uio.chunk_elements( chunk_type=chunk_type, elements=elements, max_characters=max_characters, ) if not elements: warnings.warn( f"No elements were extracted from the content: {content}" ) return # Iterate to process and store embeddings, set batch of 50 for i in range(0, len(chunks), 50): batch_chunks = chunks[i : i + 50] batch_vectors = self.embedding_model.embed_list( objs=[str(chunk) for chunk in batch_chunks] ) records = [] # Prepare the payload for each vector record, includes the content # path, chunk metadata, and chunk text for vector, chunk in zip(batch_vectors, batch_chunks): if isinstance(content, str): content_path_info = {"content path": content} elif isinstance(content, Element): content_path_info = { "content path": content.metadata.file_directory } chunk_metadata = {"metadata": chunk.metadata.to_dict()} chunk_text = {"text": str(chunk)} combined_dict = { **content_path_info, **chunk_metadata, **chunk_text, } records.append( VectorRecord(vector=vector, payload=combined_dict) ) self.storage.add(records=records)
[docs] def query( self, query: str, top_k: int = Constants.DEFAULT_TOP_K_RESULTS, similarity_threshold: float = Constants.DEFAULT_SIMILARITY_THRESHOLD, ) -> List[Dict[str, Any]]: r"""Executes a query in vector storage and compiles the retrieved results into a dictionary. Args: query (str): Query string for information retriever. similarity_threshold (float, optional): The similarity threshold for filtering results. Defaults to `DEFAULT_SIMILARITY_THRESHOLD`. top_k (int, optional): The number of top results to return during retriever. Must be a positive integer. Defaults to `DEFAULT_TOP_K_RESULTS`. Returns: List[Dict[str, Any]]: Concatenated list of the query results. Raises: ValueError: If 'top_k' is less than or equal to 0, if vector storage is empty, if payload of vector storage is None. """ if top_k <= 0: raise ValueError("top_k must be a positive integer.") # Load the storage incase it's hosted remote self.storage.load() query_vector = self.embedding_model.embed(obj=query) db_query = VectorDBQuery(query_vector=query_vector, top_k=top_k) query_results = self.storage.query(query=db_query) if query_results[0].record.payload is None: raise ValueError( "Payload of vector storage is None, please check the " "collection." ) # format the results formatted_results = [] for result in query_results: if ( result.similarity >= similarity_threshold and result.record.payload is not None ): result_dict = { 'similarity score': str(result.similarity), 'content path': result.record.payload.get( 'content path', '' ), 'metadata': result.record.payload.get('metadata', {}), 'text': result.record.payload.get('text', ''), } formatted_results.append(result_dict) content_path = query_results[0].record.payload.get('content path', '') if not formatted_results: return [ { 'text': ( f"No suitable information retrieved " f"from {content_path} with similarity_threshold" f" = {similarity_threshold}." ) } ] return formatted_results