Source code for camel.storages.graph_storages.neo4j_graph

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import logging
import os
from hashlib import md5
from typing import Any, Dict, List, Optional

from camel.storages.graph_storages import BaseGraphStorage, GraphElement
from camel.utils import dependencies_required

logger = logging.getLogger(__name__)

BASE_ENTITY_LABEL = "__Entity__"
EXCLUDED_LABELS = ["Excluded_Label_A", "Excluded_Label_B"]
EXCLUDED_RELS = ["Excluded_Rel_A"]

NODE_PROPERTY_QUERY = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE NOT type = "RELATIONSHIP" AND elementType = "node"
AND NOT label IN $EXCLUDED_LABELS
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
RETURN {labels: nodeLabels, properties: properties} AS output
"""

REL_PROPERTY_QUERY = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE NOT type = "RELATIONSHIP" AND elementType = "relationship"
AND NOT label IN $EXCLUDED_LABELS
WITH label AS nodeLabels, collect({property:property, type:type}) AS properties
RETURN {type: nodeLabels, properties: properties} AS output
"""

REL_QUERY = """
CALL apoc.meta.data()
YIELD label, other, elementType, type, property
WHERE type = "RELATIONSHIP" AND elementType = "node"
UNWIND other AS other_node
WITH * WHERE NOT label IN $EXCLUDED_LABELS
    AND NOT other_node IN $EXCLUDED_LABELS
RETURN {start: label, type: property, end: toString(other_node)} AS output
"""

INCLUDE_DOCS_QUERY = (
    "MERGE (d:Element {id:$element['element_id']}) "
    "SET d.text = $element['text'] "
    "SET d += $element['metadata'] "
    "WITH d "
)

LIST_LIMIT = 128


[docs] class Neo4jGraph(BaseGraphStorage): r"""Provides a connection to a Neo4j database for various graph operations. The detailed information about Neo4j is available at: `Neo4j https://neo4j.com/docs/getting-started` This module refered to the work of Langchian and Llamaindex. Args: url (str): The URL of the Neo4j database server. username (str): The username for database authentication. password (str): The password for database authentication. database (str): The name of the database to connect to. Defaults to `neo4j`. timeout (Optional[float]): The timeout for transactions in seconds. Useful for terminating long-running queries. Defaults to `None`. truncate (bool): A flag to indicate whether to remove lists with more than `LIST_LIMIT` elements from results. Defaults to `False`. """ @dependencies_required('neo4j') def __init__( self, url: str, username: str, password: str, database: str = "neo4j", timeout: Optional[float] = None, truncate: bool = False, ) -> None: r"""Create a new Neo4j graph instance.""" import neo4j url = os.environ.get("NEO4J_URI") or url username = os.environ.get("NEO4J_USERNAME") or username password = os.environ.get("NEO4J_PASSWORD") or password self.driver = neo4j.GraphDatabase.driver( url, auth=(username, password) ) self.database = database self.timeout = timeout self.truncate = truncate self.schema: str = "" self.structured_schema: Dict[str, Any] = {} # Verify connection try: self.driver.verify_connectivity() except neo4j.exceptions.ServiceUnavailable: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the url is correct" ) except neo4j.exceptions.AuthError: raise ValueError( "Could not connect to Neo4j database. " "Please ensure that the username and password are correct" ) # Set schema try: self.refresh_schema() except neo4j.exceptions.ClientError: raise ValueError( "Could not use APOC procedures. " "Please ensure the APOC plugin is installed in Neo4j and that " "'apoc.meta.data()' is allowed in Neo4j configuration " ) @property def get_client(self) -> Any: r"""Get the underlying graph storage client.""" return self.driver @property def get_schema(self, refresh: bool = False) -> str: r"""Retrieve the schema of the Neo4jGraph store. Args: refresh (bool): A flag indicating whether to forcibly refresh the schema from the Neo4jGraph store regardless of whether it is already cached. Defaults to `False`. Returns: str: The schema of the Neo4jGraph store. """ if self.schema and not refresh: return self.schema self.refresh_schema() logger.debug(f"get_schema() schema:\n{self.schema}") return self.schema @property def get_structured_schema(self) -> Dict[str, Any]: r"""Returns the structured schema of the graph Returns: Dict[str, Any]: The structured schema of the graph. """ return self.structured_schema def _value_truncate(self, raw_value: Any) -> Any: r"""Truncates the input raw value by removing entries that is dictionary or list with values resembling embeddings and containing more than `LIST_LIMIT` elements. This method aims to reduce unnecessary computational cost and noise in scenarios where such detailed data structures are not needed. If the input value is not dictionary or list then give the raw value back. Args: raw_value (Any): The raw value to be truncated. Returns: Any: The truncated value, with embedding-like dictionaries and oversized lists handled. """ if isinstance(raw_value, dict): new_dict = {} for key, value in raw_value.items(): if isinstance(value, dict): truncated_value = self._value_truncate(value) # Check if the truncated value is not None if truncated_value is not None: new_dict[key] = truncated_value elif isinstance(value, list): if len(value) < LIST_LIMIT: truncated_value = self._value_truncate(value) # Check if the truncated value is not None if truncated_value is not None: new_dict[key] = truncated_value # Do not include the key if the list is oversized else: new_dict[key] = value return new_dict elif isinstance(raw_value, list): if len(raw_value) < LIST_LIMIT: return [ self._value_truncate(item) for item in raw_value if self._value_truncate(item) is not None ] else: return None else: return raw_value
[docs] def query( self, query: str, params: Optional[Dict[str, Any]] = None ) -> List[Dict[str, Any]]: r"""Executes a Neo4j Cypher declarative query in a database. Args: query (str): The Cypher query to be executed. params (Optional[Dict[str, Any]]): A dictionary of parameters to be used in the query. Defaults to `None`. Returns: List[Dict[str, Any]]: A list of dictionaries, each dictionary represents a row of results from the Cypher query. Raises: ValueError: If the executed Cypher query syntax is invalid. """ from neo4j import Query from neo4j.exceptions import CypherSyntaxError if params is None: params = {} with self.driver.session(database=self.database) as session: try: data = session.run( Query(text=query, timeout=self.timeout), params ) json_data = [r.data() for r in data] if self.truncate: json_data = [self._value_truncate(el) for el in json_data] return json_data except CypherSyntaxError as e: raise ValueError( f"Generated Cypher Statement is not valid\n{e}" )
[docs] def refresh_schema(self) -> None: r"""Refreshes the Neo4j graph schema information by querying the database for node properties, relationship properties, and relationships. """ from neo4j.exceptions import ClientError # Extract schema elements from the database node_properties = [ el["output"] for el in self.query( NODE_PROPERTY_QUERY, params={ "EXCLUDED_LABELS": [*EXCLUDED_LABELS, BASE_ENTITY_LABEL] }, ) ] rel_properties = [ el["output"] for el in self.query( REL_PROPERTY_QUERY, params={"EXCLUDED_LABELS": EXCLUDED_RELS} ) ] relationships = [ el["output"] for el in self.query( REL_QUERY, params={ "EXCLUDED_LABELS": [*EXCLUDED_LABELS, BASE_ENTITY_LABEL] }, ) ] # Get constraints & indexes try: constraint = self.query("SHOW CONSTRAINTS") index = self.query("SHOW INDEXES YIELD *") except ( ClientError ): # Read-only user might not have access to schema information constraint = [] index = [] self.structured_schema = { "node_props": { el["labels"]: el["properties"] for el in node_properties }, "rel_props": { el["type"]: el["properties"] for el in rel_properties }, "relationships": relationships, "metadata": {"constraint": constraint, "index": index}, } # Format node properties formatted_node_props = [] for el in node_properties: props_str = ", ".join( [ f"{prop['property']}: {prop['type']}" for prop in el["properties"] ] ) formatted_node_props.append(f"{el['labels']} {{{props_str}}}") # Format relationship properties formatted_rel_props = [] for el in rel_properties: props_str = ", ".join( [ f"{prop['property']}: {prop['type']}" for prop in el["properties"] ] ) formatted_rel_props.append(f"{el['type']} {{{props_str}}}") # Format relationships formatted_rels = [ f"(:{el['start']})-[:{el['type']}]->(:{el['end']})" for el in relationships ] self.schema = "\n".join( [ "Node properties are the following:", ", ".join(formatted_node_props), "Relationship properties are the following:", ", ".join(formatted_rel_props), "The relationships are the following:", ", ".join(formatted_rels), ] )
[docs] def add_triplet(self, subj: str, obj: str, rel: str) -> None: r"""Adds a relationship (triplet) between two entities in the database. Args: subj (str): The identifier for the subject entity. obj (str): The identifier for the object entity. rel (str): The relationship between the subject and object. """ query = """ MERGE (n1:`%s` {id:$subj}) MERGE (n2:`%s` {id:$obj}) MERGE (n1)-[:`%s`]->(n2) """ prepared_statement = query % ( BASE_ENTITY_LABEL.replace("_", ""), BASE_ENTITY_LABEL.replace("_", ""), rel.replace(" ", "_").upper(), ) # Execute the query within a database session with self.driver.session(database=self.database) as session: session.run(prepared_statement, {"subj": subj, "obj": obj})
def _delete_rel(self, subj: str, obj: str, rel: str) -> None: r"""Deletes a specific relationship between two nodes in the Neo4j database. Args: subj (str): The identifier for the subject entity. obj (str): The identifier for the object entity. rel (str): The relationship between the subject and object to delete. """ with self.driver.session(database=self.database) as session: session.run( ( "MATCH (n1:{})-[r:{}]->(n2:{}) WHERE n1.id = $subj AND" " n2.id = $obj DELETE r" ).format( BASE_ENTITY_LABEL.replace("_", ""), rel, BASE_ENTITY_LABEL.replace("_", ""), ), {"subj": subj, "obj": obj}, ) def _delete_entity(self, entity: str) -> None: r"""Deletes an entity from the Neo4j database based on its unique identifier. Args: entity (str): The unique identifier of the entity to be deleted. """ with self.driver.session(database=self.database) as session: session.run( "MATCH (n:%s) WHERE n.id = $entity DELETE n" % BASE_ENTITY_LABEL.replace("_", ""), {"entity": entity}, ) def _check_edges(self, entity: str) -> bool: r"""Checks if the given entity has any relationships in the graph database. Args: entity (str): The unique identifier of the entity to check. Returns: bool: True if the entity has at least one edge (relationship), False otherwise. """ with self.driver.session(database=self.database) as session: is_exists_result = session.run( "MATCH (n1:%s)--() WHERE n1.id = $entity RETURN count(*)" % (BASE_ENTITY_LABEL.replace("_", "")), {"entity": entity}, ) return bool(list(is_exists_result))
[docs] def delete_triplet(self, subj: str, obj: str, rel: str) -> None: r"""Deletes a specific triplet from the graph, comprising a subject, object and relationship. Args: subj (str): The identifier for the subject entity. obj (str): The identifier for the object entity. rel (str): The relationship between the subject and object. """ self._delete_rel(subj, obj, rel) if not self._check_edges(subj): self._delete_entity(subj) if not self._check_edges(obj): self._delete_entity(obj)
def _get_node_import_query( self, base_entity_label: bool, include_source: bool ) -> str: r"""Constructs a Cypher query string for importing nodes into a Neo4j database. Args: base_entity_label (bool): Flag indicating whether to use a base entity label in the MERGE operation. include_source (bool): Flag indicating whether to include source element information in the query. Returns: str: A Cypher query string tailored based on the provided flags. """ REL = 'MERGE (d)-[:MENTIONS]->(source) ' if include_source else '' if base_entity_label: return ( f"{INCLUDE_DOCS_QUERY if include_source else ''}" "UNWIND $data AS row " f"MERGE (source:`{BASE_ENTITY_LABEL}` {{id: row.id}}) " "SET source += row.properties " f"{REL}" "WITH source, row " "CALL apoc.create.addLabels( source, [row.type] ) YIELD node " "RETURN distinct 'done' AS result" ) else: return ( f"{INCLUDE_DOCS_QUERY if include_source else ''}" "UNWIND $data AS row " "CALL apoc.merge.node([row.type], {id: row.id}, " "row.properties, {}) YIELD node " f"{'MERGE (d)-[:MENTIONS]->(node) ' if include_source else ''}" "RETURN distinct 'done' AS result" ) def _get_rel_import_query(self, base_entity_label: bool) -> str: r"""Constructs a Cypher query string for importing relationship into a Neo4j database. Args: base_entity_label (bool): Flag indicating whether to use a base entity label in the MERGE operation. Returns: str: A Cypher query string tailored based on the provided flags. """ if base_entity_label: return ( "UNWIND $data AS row " f"MERGE (subj:`{BASE_ENTITY_LABEL}` {{id: row.subj}}) " f"MERGE (obj:`{BASE_ENTITY_LABEL}` {{id: row.obj}}) " "WITH subj, obj, row " "CALL apoc.merge.relationship(subj, row.type, " "{}, row.properties, obj) YIELD rel " "RETURN distinct 'done'" ) else: return ( "UNWIND $data AS row " "CALL apoc.merge.node([row.subj_label], {id: row.subj}," "{}, {}) YIELD node as subj " "CALL apoc.merge.node([row.obj_label], {id: row.obj}," "{}, {}) YIELD node as obj " "CALL apoc.merge.relationship(subj, row.type, " "{}, row.properties, obj) YIELD rel " "RETURN distinct 'done'" )
[docs] def add_graph_elements( self, graph_elements: List[GraphElement], include_source: bool = False, base_entity_label: bool = False, ) -> None: r"""Adds nodes and relationships from a list of GraphElement objects to the graph storage. Args: graph_elements (List[GraphElement]): A list of GraphElement objects that contain the nodes and relationships to be added to the graph. Each GraphElement should encapsulate the structure of part of the graph, including nodes, relationships, and the source element information. include_source (bool, optional): If True, stores the source element and links it to nodes in the graph using the MENTIONS relationship. This is useful for tracing back the origin of data. Merges source elements based on the `id` property from the source element metadata if available; otherwise it calculates the MD5 hash of `page_content` for merging process. Defaults to `False`. base_entity_label (bool, optional): If True, each newly created node gets a secondary `BASE_ENTITY_LABEL` label, which is indexed and improves import speed and performance. Defaults to `False`. """ if base_entity_label: # check if constraint already exists constraint_exists = any( el["labelsOrTypes"] == [BASE_ENTITY_LABEL] and el["properties"] == ["id"] for el in self.structured_schema.get("metadata", {}).get( "constraint", [] ) ) if not constraint_exists: # Create constraint self.query( "CREATE CONSTRAINT IF NOT EXISTS FOR" f"(b:{BASE_ENTITY_LABEL}) " "REQUIRE b.id IS UNIQUE;" ) self.refresh_schema() # refresh constraint information node_import_query = self._get_node_import_query( base_entity_label, include_source ) rel_import_query = self._get_rel_import_query(base_entity_label) for element in graph_elements: if not element.source.to_dict()['element_id']: element.source.to_dict()['element_id'] = md5( str(element).encode("utf-8") ).hexdigest() # Import nodes self.query( node_import_query, { "data": [el.__dict__ for el in element.nodes], "element": element.source.to_dict(), }, ) # Import relationships self.query( rel_import_query, { "data": [ { "subj": el.subj.id, "subj_label": el.subj.type, "obj": el.obj.id, "obj_label": el.obj.type, "type": el.type.replace(" ", "_").upper(), "properties": el.properties, } for el in element.relationships ] }, )
[docs] def random_walk_with_restarts( self, graph_name: str, sampling_ratio: float, start_node_ids: List[int], restart_probability: float = 0.1, node_label_stratification: bool = False, relationship_weight_property: Optional[str] = None, ) -> Dict[str, Any]: r"""Runs the Random Walk with Restarts (RWR) sampling algorithm. Args: graph_name (str): The name of the original graph in the graph catalog. sampling_ratio (float): The fraction of nodes in the original graph to be sampled. start_node_ids (List[int]): IDs of the initial set of nodes of the original graph from which the sampling random walks will start. restart_probability (float, optional): The probability that a sampling random walk restarts from one of the start nodes. Defaults to `0.1`. node_label_stratification (bool, optional): If true, preserves the node label distribution of the original graph. Defaults to `False`. relationship_weight_property (Optional[str], optional): Name of the relationship property to use as weights. If unspecified, the algorithm runs unweighted. Defaults to `None`. Returns: Dict[str, Any]: A dictionary with the results of the RWR sampling. """ from neo4j.exceptions import ClientError, CypherSyntaxError try: self.query(query="CALL gds.version() YIELD version RETURN version") except ClientError: raise ValueError( "Graph Data Science (GDS) library is not installed or not" " available. Reference: https://neo4j.com/docs/graph-data-science/current/installation/" ) query = """ CALL gds.graph.sample.rwr($graphName, $fromGraphName, { samplingRatio: $samplingRatio, startNodes: $startNodes, restartProbability: $restartProbability, nodeLabelStratification: $nodeLabelStratification, relationshipWeightProperty: $relationshipWeightProperty }) YIELD graphName, fromGraphName, nodeCount, relationshipCount, startNodeCount, projectMillis RETURN graphName, fromGraphName, nodeCount, relationshipCount, startNodeCount, projectMillis """ params = { "graphName": f"{graph_name}_sampled", "fromGraphName": graph_name, "samplingRatio": sampling_ratio, "startNodes": start_node_ids, "restartProbability": restart_probability, "nodeLabelStratification": node_label_stratification, "relationshipWeightProperty": relationship_weight_property, } try: result = self.query(query, params) return result[0] if result else {} except CypherSyntaxError as e: raise ValueError(f"Generated Cypher Statement is not valid\n{e}")
[docs] def common_neighbour_aware_random_walk( self, graph_name: str, sampling_ratio: float, start_node_ids: List[int], node_label_stratification: bool = False, relationship_weight_property: Optional[str] = None, ) -> Dict[str, Any]: r"""Runs the Common Neighbour Aware Random Walk (CNARW) sampling algorithm. Args: graph_name (str): The name of the original graph in the graph catalog. sampling_ratio (float): The fraction of nodes in the original graph to be sampled. start_node_ids (List[int]): IDs of the initial set of nodes of the original graph from which the sampling random walks will start. node_label_stratification (bool, optional): If true, preserves the node label distribution of the original graph. Defaults to `False`. relationship_weight_property (Optional[str], optional): Name of the relationship property to use as weights. If unspecified, the algorithm runs unweighted. Defaults to `None`. Returns: Dict[str, Any]: A dictionary with the results of the CNARW sampling. """ from neo4j.exceptions import ClientError, CypherSyntaxError try: self.query(query="CALL gds.version() YIELD version RETURN version") except ClientError: raise ValueError( "Graph Data Science (GDS) library is not installed or not" " available. Reference: https://neo4j.com/docs/graph-data-science/current/installation/" ) query = """ CALL gds.graph.sample.cnarw($graphName, $fromGraphName, { samplingRatio: $samplingRatio, startNodes: $startNodes, nodeLabelStratification: $nodeLabelStratification, relationshipWeightProperty: $relationshipWeightProperty }) YIELD graphName, fromGraphName, nodeCount, relationshipCount, startNodeCount, projectMillis RETURN graphName, fromGraphName, nodeCount, relationshipCount, startNodeCount, projectMillis """ params = { "graphName": f"{graph_name}_sampled_cnarw", "fromGraphName": graph_name, "samplingRatio": sampling_ratio, "startNodes": start_node_ids, "nodeLabelStratification": node_label_stratification, "relationshipWeightProperty": relationship_weight_property, } try: result = self.query(query, params) return result[0] if result else {} except CypherSyntaxError as e: raise ValueError(f"Generated Cypher Statement is not valid\n{e}")