Source code for camel.toolkits.search_toolkit

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import xml.etree.ElementTree as ET
from typing import Any, Dict, List, Literal, Optional, Type, TypeAlias, Union

import requests
from pydantic import BaseModel

from camel.toolkits.base import BaseToolkit
from camel.toolkits.function_tool import FunctionTool
from camel.utils import api_keys_required, dependencies_required


[docs] class SearchToolkit(BaseToolkit): r"""A class representing a toolkit for web search. This class provides methods for searching information on the web using search engines like Google, DuckDuckGo, Wikipedia and Wolfram Alpha, Brave. """
[docs] @dependencies_required("wikipedia") def search_wiki(self, entity: str) -> str: r"""Search the entity in WikiPedia and return the summary of the required page, containing factual information about the given entity. Args: entity (str): The entity to be searched. Returns: str: The search result. If the page corresponding to the entity exists, return the summary of this entity in a string. """ import wikipedia result: str try: result = wikipedia.summary(entity, sentences=5, auto_suggest=False) except wikipedia.exceptions.DisambiguationError as e: result = wikipedia.summary( e.options[0], sentences=5, auto_suggest=False ) except wikipedia.exceptions.PageError: result = ( "There is no page in Wikipedia corresponding to entity " f"{entity}, please specify another word to describe the" " entity to be searched." ) except wikipedia.exceptions.WikipediaException as e: result = f"An exception occurred during the search: {e}" return result
[docs] @dependencies_required("linkup") @api_keys_required( [ (None, "LINKUP_API_KEY"), ] ) def search_linkup( self, query: str, depth: Literal["standard", "deep"] = "standard", output_type: Literal[ "searchResults", "sourcedAnswer", "structured" ] = "searchResults", structured_output_schema: Union[Type[BaseModel], str, None] = None, ) -> Dict[str, Any]: r"""Search for a query in the Linkup API and return results in various formats. Args: query (str): The search query. depth (Literal["standard", "deep"]): The depth of the search. "standard" for a straightforward search, "deep" for a more comprehensive search. output_type (Literal["searchResults", "sourcedAnswer", "structured"]): The type of output: - "searchResults" for raw search results, - "sourcedAnswer" for an answer with supporting sources, - "structured" for output based on a provided schema. structured_output_schema (Union[Type[BaseModel], str, None]): If `output_type` is "structured",specify the schema of the output. Can be a Pydantic BaseModel or a JSON schema string. Returns: Dict[str, Any]: A dictionary representing the search result. The structure depends on the `output_type`. If an error occurs, returns an error message. """ try: from linkup import LinkupClient # Initialize the Linkup client with the API key LINKUP_API_KEY = os.getenv("LINKUP_API_KEY") client = LinkupClient(api_key=LINKUP_API_KEY) # Perform the search using the specified output_type response = client.search( query=query, depth=depth, output_type=output_type, structured_output_schema=structured_output_schema, ) if output_type == "searchResults": results = [ item.__dict__ for item in response.__dict__.get('results', []) ] return {"results": results} elif output_type == "sourcedAnswer": answer = response.__dict__.get('answer', '') sources = [ item.__dict__ for item in response.__dict__.get('sources', []) ] return {"answer": answer, "sources": sources} elif output_type == "structured" and structured_output_schema: return response.__dict__ else: return {"error": f"Invalid output_type: {output_type}"} except Exception as e: return {"error": f"An unexpected error occurred: {e!s}"}
[docs] @dependencies_required("duckduckgo_search") def search_duckduckgo( self, query: str, source: str = "text", max_results: int = 5 ) -> List[Dict[str, Any]]: r"""Use DuckDuckGo search engine to search information for the given query. This function queries the DuckDuckGo API for related topics to the given search term. The results are formatted into a list of dictionaries, each representing a search result. Args: query (str): The query to be searched. source (str): The type of information to query (e.g., "text", "images", "videos"). Defaults to "text". max_results (int): Max number of results, defaults to `5`. Returns: List[Dict[str, Any]]: A list of dictionaries where each dictionary represents a search result. """ from duckduckgo_search import DDGS from requests.exceptions import RequestException ddgs = DDGS() responses: List[Dict[str, Any]] = [] if source == "text": try: results = ddgs.text(keywords=query, max_results=max_results) except RequestException as e: # Handle specific exceptions or general request exceptions responses.append({"error": f"duckduckgo search failed.{e}"}) # Iterate over results found for i, result in enumerate(results, start=1): # Creating a response object with a similar structure response = { "result_id": i, "title": result["title"], "description": result["body"], "url": result["href"], } responses.append(response) elif source == "images": try: results = ddgs.images(keywords=query, max_results=max_results) except RequestException as e: # Handle specific exceptions or general request exceptions responses.append({"error": f"duckduckgo search failed.{e}"}) # Iterate over results found for i, result in enumerate(results, start=1): # Creating a response object with a similar structure response = { "result_id": i, "title": result["title"], "image": result["image"], "url": result["url"], "source": result["source"], } responses.append(response) elif source == "videos": try: results = ddgs.videos(keywords=query, max_results=max_results) except RequestException as e: # Handle specific exceptions or general request exceptions responses.append({"error": f"duckduckgo search failed.{e}"}) # Iterate over results found for i, result in enumerate(results, start=1): # Creating a response object with a similar structure response = { "result_id": i, "title": result["title"], "description": result["description"], "embed_url": result["embed_url"], "publisher": result["publisher"], "duration": result["duration"], "published": result["published"], } responses.append(response) # If no answer found, return an empty list return responses
[docs] @api_keys_required( [ (None, 'BRAVE_API_KEY'), ] ) def search_brave( self, q: str, country: str = "US", search_lang: str = "en", ui_lang: str = "en-US", count: int = 20, offset: int = 0, safesearch: str = "moderate", freshness: Optional[str] = None, text_decorations: bool = True, spellcheck: bool = True, result_filter: Optional[str] = None, goggles_id: Optional[str] = None, units: Optional[str] = None, extra_snippets: Optional[bool] = None, summary: Optional[bool] = None, ) -> Dict[str, Any]: r"""This function queries the Brave search engine API and returns a dictionary, representing a search result. See https://api.search.brave.com/app/documentation/web-search/query for more details. Args: q (str): The user's search query term. Query cannot be empty. Maximum of 400 characters and 50 words in the query. country (str): The search query country where results come from. The country string is limited to 2 character country codes of supported countries. For a list of supported values, see Country Codes. (default: :obj:`US `) search_lang (str): The search language preference. The 2 or more character language code for which search results are provided. For a list of possible values, see Language Codes. ui_lang (str): User interface language preferred in response. Usually of the format '<language_code>-<country_code>'. For more, see RFC 9110. For a list of supported values, see UI Language Codes. count (int): The number of search results returned in response. The maximum is 20. The actual number delivered may be less than requested. Combine this parameter with offset to paginate search results. offset (int): The zero based offset that indicates number of search results per page (count) to skip before returning the result. The maximum is 9. The actual number delivered may be less than requested based on the query. In order to paginate results use this parameter together with count. For example, if your user interface displays 20 search results per page, set count to 20 and offset to 0 to show the first page of results. To get subsequent pages, increment offset by 1 (e.g. 0, 1, 2). The results may overlap across multiple pages. safesearch (str): Filters search results for adult content. The following values are supported: - 'off': No filtering is done. - 'moderate': Filters explicit content, like images and videos, but allows adult domains in the search results. - 'strict': Drops all adult content from search results. freshness (Optional[str]): Filters search results by when they were discovered: - 'pd': Discovered within the last 24 hours. - 'pw': Discovered within the last 7 Days. - 'pm': Discovered within the last 31 Days. - 'py': Discovered within the last 365 Days. - 'YYYY-MM-DDtoYYYY-MM-DD': Timeframe is also supported by specifying the date range e.g. '2022-04-01to2022-07-30'. text_decorations (bool): Whether display strings (e.g. result snippets) should include decoration markers (e.g. highlighting characters). spellcheck (bool): Whether to spellcheck provided query. If the spellchecker is enabled, the modified query is always used for search. The modified query can be found in altered key from the query response model. result_filter (Optional[str]): A comma delimited string of result types to include in the search response. Not specifying this parameter will return back all result types in search response where data is available and a plan with the corresponding option is subscribed. The response always includes query and type to identify any query modifications and response type respectively. Available result filter values are: - 'discussions' - 'faq' - 'infobox' - 'news' - 'query' - 'summarizer' - 'videos' - 'web' - 'locations' goggles_id (Optional[str]): Goggles act as a custom re-ranking on top of Brave's search index. For more details, refer to the Goggles repository. units (Optional[str]): The measurement units. If not provided, units are derived from search country. Possible values are: - 'metric': The standardized measurement system - 'imperial': The British Imperial system of units. extra_snippets (Optional[bool]): A snippet is an excerpt from a page you get as a result of the query, and extra_snippets allow you to get up to 5 additional, alternative excerpts. Only available under Free AI, Base AI, Pro AI, Base Data, Pro Data and Custom plans. summary (Optional[bool]): This parameter enables summary key generation in web search results. This is required for summarizer to be enabled. Returns: Dict[str, Any]: A dictionary representing a search result. """ import requests BRAVE_API_KEY = os.getenv("BRAVE_API_KEY") url = "https://api.search.brave.com/res/v1/web/search" headers = { "Content-Type": "application/json", "X-BCP-APIV": "1.0", "X-Subscription-Token": BRAVE_API_KEY, } ParamsType: TypeAlias = Dict[ str, Union[str, int, float, List[Union[str, int, float]], None], ] params: ParamsType = { "q": q, "country": country, "search_lang": search_lang, "ui_lang": ui_lang, "count": count, "offset": offset, "safesearch": safesearch, "freshness": freshness, "text_decorations": text_decorations, "spellcheck": spellcheck, "result_filter": result_filter, "goggles_id": goggles_id, "units": units, "extra_snippets": extra_snippets, "summary": summary, } response = requests.get(url, headers=headers, params=params) data = response.json()["web"] return data
[docs] @api_keys_required( [ (None, 'GOOGLE_API_KEY'), (None, 'SEARCH_ENGINE_ID'), ] ) def search_google( self, query: str, num_result_pages: int = 5 ) -> List[Dict[str, Any]]: r"""Use Google search engine to search information for the given query. Args: query (str): The query to be searched. num_result_pages (int): The number of result pages to retrieve. Returns: List[Dict[str, Any]]: A list of dictionaries where each dictionary represents a website. Each dictionary contains the following keys: - 'result_id': A number in order. - 'title': The title of the website. - 'description': A brief description of the website. - 'long_description': More detail of the website. - 'url': The URL of the website. Example: { 'result_id': 1, 'title': 'OpenAI', 'description': 'An organization focused on ensuring that artificial general intelligence benefits all of humanity.', 'long_description': 'OpenAI is a non-profit artificial intelligence research company. Our goal is to advance digital intelligence in the way that is most likely to benefit humanity as a whole', 'url': 'https://www.openai.com' } title, description, url of a website. """ import requests # https://developers.google.com/custom-search/v1/overview GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # https://cse.google.com/cse/all SEARCH_ENGINE_ID = os.getenv("SEARCH_ENGINE_ID") # Using the first page start_page_idx = 1 # Different language may get different result search_language = "en" # How many pages to return num_result_pages = num_result_pages # Constructing the URL # Doc: https://developers.google.com/custom-search/v1/using_rest url = ( f"https://www.googleapis.com/customsearch/v1?" f"key={GOOGLE_API_KEY}&cx={SEARCH_ENGINE_ID}&q={query}&start=" f"{start_page_idx}&lr={search_language}&num={num_result_pages}" ) responses = [] # Fetch the results given the URL try: # Make the get result = requests.get(url) data = result.json() # Get the result items if "items" in data: search_items = data.get("items") # Iterate over 10 results found for i, search_item in enumerate(search_items, start=1): # Check metatags are present if "pagemap" not in search_item: continue if "metatags" not in search_item["pagemap"]: continue if ( "og:description" in search_item["pagemap"]["metatags"][0] ): long_description = search_item["pagemap"]["metatags"][ 0 ]["og:description"] else: long_description = "N/A" # Get the page title title = search_item.get("title") # Page snippet snippet = search_item.get("snippet") # Extract the page url link = search_item.get("link") response = { "result_id": i, "title": title, "description": snippet, "long_description": long_description, "url": link, } responses.append(response) else: responses.append({"error": "google search failed."}) except requests.RequestException: # Handle specific exceptions or general request exceptions responses.append({"error": "google search failed."}) # If no answer found, return an empty list return responses
[docs] @dependencies_required("wolframalpha") def query_wolfram_alpha( self, query: str, is_detailed: bool = False ) -> Union[str, Dict[str, Any]]: r"""Queries Wolfram|Alpha and returns the result. Wolfram|Alpha is an answer engine developed by Wolfram Research. It is offered as an online service that answers factual queries by computing answers from externally sourced data. Args: query (str): The query to send to Wolfram Alpha. is_detailed (bool): Whether to include additional details including step by step information in the result. (default: :obj:`False`) Returns: Union[str, Dict[str, Any]]: The result from Wolfram Alpha. Returns a string if `is_detailed` is False, otherwise returns a dictionary with detailed information. """ import wolframalpha WOLFRAMALPHA_APP_ID = os.environ.get("WOLFRAMALPHA_APP_ID") if not WOLFRAMALPHA_APP_ID: raise ValueError( "`WOLFRAMALPHA_APP_ID` not found in environment " "variables. Get `WOLFRAMALPHA_APP_ID` here: `https://products.wolframalpha.com/api/`." ) try: client = wolframalpha.Client(WOLFRAMALPHA_APP_ID) res = client.query(query) except Exception as e: return f"Wolfram Alpha wasn't able to answer it. Error: {e}" pased_result = self._parse_wolfram_result(res) if is_detailed: step_info = self._get_wolframalpha_step_by_step_solution( WOLFRAMALPHA_APP_ID, query ) pased_result["steps"] = step_info return pased_result return pased_result["final_answer"]
def _parse_wolfram_result(self, result) -> Dict[str, Any]: r"""Parses a Wolfram Alpha API result into a structured dictionary format. Args: result: The API result returned from a Wolfram Alpha query, structured with multiple pods, each containing specific information related to the query. Returns: dict: A structured dictionary with the original query and the final answer. """ # Extract the original query query = result.get("@inputstring", "") # Initialize a dictionary to hold structured output output = {"query": query, "pod_info": [], "final_answer": None} # Loop through each pod to extract the details for pod in result.get("pod", []): # Handle the case where subpod might be a list subpod_data = pod.get("subpod", {}) if isinstance(subpod_data, list): # If it's a list, get the first item for 'plaintext' and 'img' description, image_url = next( ( (data["plaintext"], data["img"]) for data in subpod_data if "plaintext" in data and "img" in data ), ("", ""), ) else: # Otherwise, handle it as a dictionary description = subpod_data.get("plaintext", "") image_url = subpod_data.get("img", {}).get("@src", "") pod_info = { "title": pod.get("@title", ""), "description": description, "image_url": image_url, } # Add to steps list output["pod_info"].append(pod_info) # Get final answer if pod.get("@primary", False): output["final_answer"] = description return output def _get_wolframalpha_step_by_step_solution( self, app_id: str, query: str ) -> dict: r"""Retrieve a step-by-step solution from the Wolfram Alpha API for a given query. Args: app_id (str): Your Wolfram Alpha API application ID. query (str): The mathematical or computational query to solve. Returns: dict: The step-by-step solution response text from the Wolfram Alpha API. """ # Define the base URL url = "https://api.wolframalpha.com/v2/query" # Set up the query parameters params = { "appid": app_id, "input": query, "podstate": ["Result__Step-by-step solution", "Show all steps"], "format": "plaintext", } # Send the request response = requests.get(url, params=params) root = ET.fromstring(response.text) # Extracting step-by-step steps, including 'SBSStep' and 'SBSHintStep' steps = [] # Find all subpods within the 'Results' pod for subpod in root.findall(".//pod[@title='Results']//subpod"): # Check if the subpod has the desired stepbystepcontenttype content_type = subpod.find("stepbystepcontenttype") if content_type is not None and content_type.text in [ "SBSStep", "SBSHintStep", ]: plaintext = subpod.find("plaintext") if plaintext is not None and plaintext.text: step_text = plaintext.text.strip() cleaned_step = step_text.replace( "Hint: |", "" ).strip() # Remove 'Hint: |' if present steps.append(cleaned_step) # Structuring the steps into a dictionary structured_steps = {} for i, step in enumerate(steps, start=1): structured_steps[f"step{i}"] = step return structured_steps
[docs] def get_tools(self) -> List[FunctionTool]: r"""Returns a list of FunctionTool objects representing the functions in the toolkit. Returns: List[FunctionTool]: A list of FunctionTool objects representing the functions in the toolkit. """ return [ FunctionTool(self.search_wiki), FunctionTool(self.search_linkup), FunctionTool(self.search_google), FunctionTool(self.search_duckduckgo), FunctionTool(self.query_wolfram_alpha), FunctionTool(self.tavily_search), FunctionTool(self.search_brave), ]