camel.messages.conversion.sharegpt.hermes package#

Submodules#

camel.messages.conversion.sharegpt.hermes.hermes_function_formatter module#

class camel.messages.conversion.sharegpt.hermes.hermes_function_formatter.HermesFunctionFormatter[source]#

Bases: FunctionCallFormatter[HermesToolCall, HermesToolResponse]

Hermes-style function calling format implementation with validation

extract_tool_calls(message: str) List[HermesToolCall][source]#

Extracts all tool calls from the provided message string.

Parameters:

message (str) – The input message string containing potential tool calls.

Returns:

A list of parsed HermesToolCall objects.

Return type:

List[HermesToolCall]

extract_tool_response(message: str) HermesToolResponse | None[source]#

Extracts a single tool response from the provided message string.

Parameters:

message (str) – The input message string containing a potential tool response.

Returns:

A parsed HermesToolResponse object,

or None if no valid response is found.

Return type:

Optional[HermesToolResponse]

format_tool_call(content: str, func_name: str, args: Dict[str, Any]) str[source]#

Formats a tool call message with the given content, function name, and arguments.

Parameters:
  • content (str) – The content or message to be included in the tool call.

  • func_name (str) – The name of the function being called.

  • args (Dict[str, Any]) – A dictionary of arguments to be passed to the function.

Returns:

A formatted string representing the tool call in Hermes

format.

Return type:

str

format_tool_response(func_name: str, result: Any) str[source]#

Formats a tool response message with the given function name and result.

Parameters:
  • func_name (str) – The name of the function whose result is being returned.

  • result (Any) – The result to be included in the tool response.

Returns:

A formatted string representing the tool response in Hermes

format.

Return type:

str

class camel.messages.conversion.sharegpt.hermes.hermes_function_formatter.HermesToolCall(*, name: str, arguments: Dict[str, Any])[source]#

Bases: ToolCall

Represents a single tool/function call with validation

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'json_schema_extra': {'examples': [{'arguments': {'city': 'London', 'units': 'celsius'}, 'name': 'get_weather'}]}}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'arguments': FieldInfo(annotation=Dict[str, Any], required=True, description='The arguments to pass to the tool'), 'name': FieldInfo(annotation=str, required=True, description='The name of the tool to call', metadata=[MinLen(min_length=1), MaxLen(max_length=256)])}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

class camel.messages.conversion.sharegpt.hermes.hermes_function_formatter.HermesToolResponse(*, name: str, content: Any)[source]#

Bases: ToolResponse

Represents a single tool/function call with validation

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'json_schema_extra': {'examples': [{'content': {'conditions': 'sunny', 'humidity': 65, 'temperature': 20}, 'name': 'get_weather'}]}}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'content': FieldInfo(annotation=Any, required=True, description='The response content from the tool. Must be JSON serializable literal or object'), 'name': FieldInfo(annotation=str, required=True, description='The name of the tool that was called', metadata=[MinLen(min_length=1), MaxLen(max_length=256)])}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

Module contents#

class camel.messages.conversion.sharegpt.hermes.HermesFunctionFormatter[source]#

Bases: FunctionCallFormatter[HermesToolCall, HermesToolResponse]

Hermes-style function calling format implementation with validation

extract_tool_calls(message: str) List[HermesToolCall][source]#

Extracts all tool calls from the provided message string.

Parameters:

message (str) – The input message string containing potential tool calls.

Returns:

A list of parsed HermesToolCall objects.

Return type:

List[HermesToolCall]

extract_tool_response(message: str) HermesToolResponse | None[source]#

Extracts a single tool response from the provided message string.

Parameters:

message (str) – The input message string containing a potential tool response.

Returns:

A parsed HermesToolResponse object,

or None if no valid response is found.

Return type:

Optional[HermesToolResponse]

format_tool_call(content: str, func_name: str, args: Dict[str, Any]) str[source]#

Formats a tool call message with the given content, function name, and arguments.

Parameters:
  • content (str) – The content or message to be included in the tool call.

  • func_name (str) – The name of the function being called.

  • args (Dict[str, Any]) – A dictionary of arguments to be passed to the function.

Returns:

A formatted string representing the tool call in Hermes

format.

Return type:

str

format_tool_response(func_name: str, result: Any) str[source]#

Formats a tool response message with the given function name and result.

Parameters:
  • func_name (str) – The name of the function whose result is being returned.

  • result (Any) – The result to be included in the tool response.

Returns:

A formatted string representing the tool response in Hermes

format.

Return type:

str