Source code for camel.embeddings.mistral_embedding
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations
import os
from typing import Any
from camel.embeddings.base import BaseEmbedding
from camel.types import EmbeddingModelType
from camel.utils import api_keys_required
[docs]
class MistralEmbedding(BaseEmbedding[str]):
r"""Provides text embedding functionalities using Mistral's models.
Args:
model_type (EmbeddingModelType, optional): The model type to be
used for text embeddings.
(default: :obj:`MISTRAL_EMBED`)
api_key (str, optional): The API key for authenticating with the
Mistral service. (default: :obj:`None`)
dimensions (int, optional): The text embedding output dimensions.
(default: :obj:`None`)
Raises:
RuntimeError: If an unsupported model type is specified.
"""
@api_keys_required(
[
("api_key", 'MISTRAL_API_KEY'),
]
)
def __init__(
self,
model_type: EmbeddingModelType = (EmbeddingModelType.MISTRAL_EMBED),
api_key: str | None = None,
dimensions: int | None = None,
) -> None:
from mistralai import Mistral
if not model_type.is_mistral:
raise ValueError("Invalid Mistral embedding model type.")
self.model_type = model_type
if dimensions is None:
self.output_dim = model_type.output_dim
else:
assert isinstance(dimensions, int)
self.output_dim = dimensions
self._api_key = api_key or os.environ.get("MISTRAL_API_KEY")
self._client = Mistral(api_key=self._api_key)
[docs]
def embed_list(
self,
objs: list[str],
**kwargs: Any,
) -> list[list[float]]:
r"""Generates embeddings for the given texts.
Args:
objs (list[str]): The texts for which to generate the embeddings.
**kwargs (Any): Extra kwargs passed to the embedding API.
Returns:
list[list[float]]: A list that represents the generated embedding
as a list of floating-point numbers.
"""
# TODO: count tokens
response = self._client.embeddings.create(
inputs=objs,
model=self.model_type.value,
**kwargs,
)
return [data.embedding for data in response.data] # type: ignore[misc,union-attr]
[docs]
def get_output_dim(self) -> int:
r"""Returns the output dimension of the embeddings.
Returns:
int: The dimensionality of the embedding for the current model.
"""
return self.output_dim