Source code for camel.configs.gemini_config

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========


from collections.abc import Iterable
from typing import Any, Optional

from pydantic import model_validator

from camel.configs.base_config import BaseConfig


[docs] class GeminiConfig(BaseConfig): r"""A simple dataclass used to configure the generation parameters of `GenerativeModel.generate_content`. Args: candidate_count (int, optional): Number of responses to return. stop_sequences (Iterable[str], optional): The set of character sequences (up to 5) that will stop output generation. If specified the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response. max_output_tokens (int, optional): The maximum number of tokens to include in a candidate. If unset, this will default to output_token_limit specified in the model's specification. temperature (float, optional): Controls the randomness of the output. Note: The default value varies by model, see the `Model.temperature` attribute of the `Model` returned the `genai.get_model` function. Values can range from [0.0,1.0], inclusive. A value closer to 1.0 will produce responses that are more varied and creative, while a value closer to 0.0 will typically result in more straightforward responses from the model. top_p (int, optional): The maximum cumulative probability of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling. Tokens are sorted based on their assigned probabilities so that only the most likely tokens are considered. Top-k sampling directly limits the maximum number of tokens to consider, while Nucleus sampling limits number of tokens based on the cumulative probability. Note: The default value varies by model, see the `Model.top_p` attribute of the `Model` returned the `genai.get_model` function. top_k (int, optional): The maximum number of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling.Top-k sampling considers the set of `top_k` most probable tokens. Defaults to 40. Note: The default value varies by model, see the `Model.top_k` attribute of the `Model` returned the `genai.get_model` function. response_mime_type (str, optional): Output response mimetype of the generated candidate text. Supported mimetype: `text/plain`: (default) Text output. `application/json`: JSON response in the candidates. response_schema (Schema, optional): Specifies the format of the JSON requested if response_mime_type is `application/json`. safety_settings (SafetySettingOptions, optional): Overrides for the model's safety settings. tools (FunctionLibraryType, optional): `protos.Tools` more info coming soon. tool_config (ToolConfigType, optional): more info coming soon. request_options (RequestOptionsType, optional): Options for the request. """ candidate_count: Optional[int] = None stop_sequences: Optional[Iterable[str]] = None max_output_tokens: Optional[int] = None temperature: Optional[float] = None top_p: Optional[float] = None top_k: Optional[int] = None response_mime_type: Optional[str] = None response_schema: Optional[Any] = None safety_settings: Optional[Any] = None tool_config: Optional[Any] = None request_options: Optional[Any] = None
[docs] @model_validator(mode="before") @classmethod def model_type_checking(cls, data: Any): r"""Validate the type of tools in the configuration. This method ensures that the tools provided in the configuration are instances of `FunctionTool`. If any tool is not an instance of `FunctionTool`, it raises a ValueError. """ if isinstance(data, dict): response_schema = data.get("response_schema") safety_settings = data.get("safety_settings") tools = data.get("tools") tool_config = data.get("tool_config") request_options = data.get("request_options") if response_schema: from google.generativeai.protos import Schema from google.generativeai.types.content_types import ( FunctionLibraryType, ToolConfigType, ) from google.generativeai.types.helper_types import ( RequestOptionsType, ) from google.generativeai.types.safety_types import ( SafetySettingOptions, ) else: return data if response_schema and not isinstance(response_schema, Schema): raise ValueError( "The response_schema should be an instance of " "google.generativeai.protos.Schema." ) if safety_settings and not isinstance( safety_settings, SafetySettingOptions ): raise ValueError( "The safety_settings should be an instance of " "google.generativeai.types.safety_types." "SafetySettingOptions." ) if tools is not None: for tool in tools: if not isinstance(tool, FunctionLibraryType): raise ValueError( "The tool should be an instance of " "google.generativeai.types.content_types." "FunctionLibraryType." ) if tool_config and not isinstance(tool_config, ToolConfigType): raise ValueError( "The tool_config should be an instance of " "google.generativeai.types.content_types.ToolConfigType." ) if request_options and not isinstance( request_options, RequestOptionsType ): raise ValueError( "The request_options should be an instance of " "google.generativeai.types.helper_types.RequestOptionsType." ) return data
Gemini_API_PARAMS = {param for param in GeminiConfig().model_fields.keys()}