camel.messages package#
Submodules#
camel.messages.base module#
- class camel.messages.base.BaseMessage(role_name: str, role_type: RoleType, meta_dict: Dict[str, Any] | None, content: str, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: Literal['auto', 'low', 'high'] = 'auto', video_detail: Literal['auto', 'low', 'high'] = 'low', parsed: Type[BaseModel] | dict | None = None)[source]#
Bases:
object
Base class for message objects used in CAMEL chat system.
- Parameters:
role_name (str) – The name of the user or assistant role.
role_type (RoleType) – The type of role, either
RoleType. ASSISTANT
orRoleType.USER
.meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
content (str) – The content of the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message. (default:
None
)image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message. (default:
None
)image_detail (Literal["auto", "low", "high"]) – Detail level of the images associated with the message. (default:
auto
)video_detail (Literal["auto", "low", "high"]) – Detail level of the videos associated with the message. (default:
low
)parsed – Optional[Union[Type[BaseModel], dict]]: Optional object which is parsed from the content. (default:
None
)
- content: str#
- create_new_instance(content: str) BaseMessage [source]#
Create a new instance of the
BaseMessage
with updated content.- Parameters:
content (str) – The new content value.
- Returns:
The new instance of
BaseMessage
.- Return type:
- extract_text_and_code_prompts() Tuple[List[TextPrompt], List[CodePrompt]] [source]#
Extract text and code prompts from the message content.
- Returns:
- A tuple containing a
list of text prompts and a list of code prompts extracted from the content.
- Return type:
Tuple[List[TextPrompt], List[CodePrompt]]
Convert ShareGPT message to BaseMessage or FunctionCallingMessage. Note tool calls and responses have an ‘assistant’ role in CAMEL
- Parameters:
message (ShareGPTMessage) – ShareGPT message to convert.
function_format (FunctionCallFormatter, optional) – Function call formatter to use. (default:
HermesFunctionFormatter()
.role_mapping (Dict[str, List[str, RoleType]], optional) – Role mapping to use. Defaults to a CAMEL specific mapping.
- Returns:
Converted message.
- Return type:
- image_detail: Literal['auto', 'low', 'high'] = 'auto'#
- image_list: List[Image] | None = None#
- classmethod make_assistant_message(role_name: str, content: str, meta_dict: Dict[str, str] | None = None, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.AUTO, video_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.LOW) BaseMessage [source]#
Create a new assistant message.
- Parameters:
role_name (str) – The name of the assistant role.
content (str) – The content of the message.
meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message.
image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the videos associated with the message.
- Returns:
The new assistant message.
- Return type:
- classmethod make_user_message(role_name: str, content: str, meta_dict: Dict[str, str] | None = None, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.AUTO, video_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.LOW) BaseMessage [source]#
Create a new user message.
- Parameters:
role_name (str) – The name of the user role.
content (str) – The content of the message.
meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message.
image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the videos associated with the message.
- Returns:
The new user message.
- Return type:
- meta_dict: Dict[str, Any] | None#
- parsed: Type[BaseModel] | dict | None = None#
- role_name: str#
- to_dict() Dict [source]#
Converts the message to a dictionary.
- Returns:
The converted dictionary.
- Return type:
dict
- to_openai_assistant_message() ChatCompletionAssistantMessageParam [source]#
Converts the message to an
OpenAIAssistantMessage
object.- Returns:
- The converted
OpenAIAssistantMessage
object.
- The converted
- Return type:
OpenAIAssistantMessage
- to_openai_message(role_at_backend: OpenAIBackendRole) ChatCompletionDeveloperMessageParam | ChatCompletionSystemMessageParam | ChatCompletionUserMessageParam | ChatCompletionAssistantMessageParam | ChatCompletionToolMessageParam | ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object.- Parameters:
role_at_backend (OpenAIBackendRole) – The role of the message in OpenAI chat system.
- Returns:
The converted
OpenAIMessage
object.- Return type:
OpenAIMessage
- to_openai_system_message() ChatCompletionSystemMessageParam [source]#
Converts the message to an
OpenAISystemMessage
object.- Returns:
- The converted
OpenAISystemMessage
object.
- The converted
- Return type:
OpenAISystemMessage
- to_openai_user_message() ChatCompletionUserMessageParam [source]#
Converts the message to an
OpenAIUserMessage
object.- Returns:
The converted
OpenAIUserMessage
object.- Return type:
OpenAIUserMessage
Convert BaseMessage to ShareGPT message
- Parameters:
function_format (FunctionCallFormatter) – Function call formatter to use. Defaults to Hermes.
- video_bytes: bytes | None = None#
- video_detail: Literal['auto', 'low', 'high'] = 'low'#
camel.messages.func_message module#
- class camel.messages.func_message.FunctionCallingMessage(role_name: str, role_type: RoleType, meta_dict: Dict[str, Any] | None, content: str, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: Literal['auto', 'low', 'high'] = 'auto', video_detail: Literal['auto', 'low', 'high'] = 'low', parsed: Type[BaseModel] | dict | None = None, func_name: str | None = None, args: Dict | None = None, result: Any | None = None)[source]#
Bases:
BaseMessage
Class for message objects used specifically for function-related messages.
- Parameters:
func_name (Optional[str]) – The name of the function used. (default:
None
)args (Optional[Dict]) – The dictionary of arguments passed to the function. (default:
None
)result (Optional[Any]) – The result of function execution. (default:
None
)
- args: Dict | None = None#
- func_name: str | None = None#
- result: Any | None = None#
- to_openai_assistant_message() ChatCompletionAssistantMessageParam [source]#
Converts the message to an
OpenAIAssistantMessage
object.- Returns:
- The converted
OpenAIAssistantMessage
object.
- The converted
- Return type:
OpenAIAssistantMessage
- to_openai_function_message() ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object with the role being “function”.- Returns:
- The converted
OpenAIMessage
object with its role being “function”.
- The converted
- Return type:
OpenAIMessage
- to_openai_message(role_at_backend: OpenAIBackendRole) ChatCompletionDeveloperMessageParam | ChatCompletionSystemMessageParam | ChatCompletionUserMessageParam | ChatCompletionAssistantMessageParam | ChatCompletionToolMessageParam | ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object.- Parameters:
role_at_backend (OpenAIBackendRole) – The role of the message in OpenAI chat system.
- Returns:
The converted
OpenAIMessage
object.- Return type:
OpenAIMessage
Convert FunctionCallingMessage to ShareGPT message.
- Parameters:
(FunctionCallFormatter[ToolCall (function_format) – optional): The function formatter to use. Defaults to None.
ToolResponse] – optional): The function formatter to use. Defaults to None.
:param : optional): The function formatter to use. Defaults to None.
Module contents#
- class camel.messages.AlpacaItem(*, instruction: str, input: str, output: str)[source]#
Bases:
BaseModel
Represents an instruction-response item in the Alpaca format.
Appropripate for both cases where input field is empty, or populated. Provides parsing from string format using the class method from_string().
- Parameters:
instruction (str) – The instruction/question/prompt
input (str) – Input context or examples (put empty string if none)
output (str) – The response/answer to the instruction
- classmethod from_string(text: str) AlpacaItem [source]#
Creates an AlpacaItem from a formatted string.
- Parameters:
text –
String in either of these formats: With input: ### Instruction: {instruction} ### Input: {input} ### Response: {response}
Without input: ### Instruction: {instruction} ### Response: {response}
- Returns:
Parsed instance
- Return type:
- Raises:
ValueError – text doesn’t match expected format or sections missing
- input: str#
- instruction: str#
- model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_fields: ClassVar[Dict[str, FieldInfo]] = {'input': FieldInfo(annotation=str, required=True, description='Optional context or input for the task. For example, when the instruction is "Summarize the following article", the input is the article.'), 'instruction': FieldInfo(annotation=str, required=True, description='The instruction/question/prompt'), 'output': FieldInfo(annotation=str, required=True, description='The response/answer to the instruction')}#
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.
- classmethod no_section_markers(value: str) str [source]#
Ensures fields don’t contain section markers like ‘### Response:’
- output: str#
- class camel.messages.BaseMessage(role_name: str, role_type: RoleType, meta_dict: Dict[str, Any] | None, content: str, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: Literal['auto', 'low', 'high'] = 'auto', video_detail: Literal['auto', 'low', 'high'] = 'low', parsed: Type[BaseModel] | dict | None = None)[source]#
Bases:
object
Base class for message objects used in CAMEL chat system.
- Parameters:
role_name (str) – The name of the user or assistant role.
role_type (RoleType) – The type of role, either
RoleType. ASSISTANT
orRoleType.USER
.meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
content (str) – The content of the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message. (default:
None
)image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message. (default:
None
)image_detail (Literal["auto", "low", "high"]) – Detail level of the images associated with the message. (default:
auto
)video_detail (Literal["auto", "low", "high"]) – Detail level of the videos associated with the message. (default:
low
)parsed – Optional[Union[Type[BaseModel], dict]]: Optional object which is parsed from the content. (default:
None
)
- content: str#
- create_new_instance(content: str) BaseMessage [source]#
Create a new instance of the
BaseMessage
with updated content.- Parameters:
content (str) – The new content value.
- Returns:
The new instance of
BaseMessage
.- Return type:
- extract_text_and_code_prompts() Tuple[List[TextPrompt], List[CodePrompt]] [source]#
Extract text and code prompts from the message content.
- Returns:
- A tuple containing a
list of text prompts and a list of code prompts extracted from the content.
- Return type:
Tuple[List[TextPrompt], List[CodePrompt]]
Convert ShareGPT message to BaseMessage or FunctionCallingMessage. Note tool calls and responses have an ‘assistant’ role in CAMEL
- Parameters:
message (ShareGPTMessage) – ShareGPT message to convert.
function_format (FunctionCallFormatter, optional) – Function call formatter to use. (default:
HermesFunctionFormatter()
.role_mapping (Dict[str, List[str, RoleType]], optional) – Role mapping to use. Defaults to a CAMEL specific mapping.
- Returns:
Converted message.
- Return type:
- image_detail: Literal['auto', 'low', 'high'] = 'auto'#
- image_list: List[Image] | None = None#
- classmethod make_assistant_message(role_name: str, content: str, meta_dict: Dict[str, str] | None = None, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.AUTO, video_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.LOW) BaseMessage [source]#
Create a new assistant message.
- Parameters:
role_name (str) – The name of the assistant role.
content (str) – The content of the message.
meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message.
image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the videos associated with the message.
- Returns:
The new assistant message.
- Return type:
- classmethod make_user_message(role_name: str, content: str, meta_dict: Dict[str, str] | None = None, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.AUTO, video_detail: OpenAIVisionDetailType | str = OpenAIVisionDetailType.LOW) BaseMessage [source]#
Create a new user message.
- Parameters:
role_name (str) – The name of the user role.
content (str) – The content of the message.
meta_dict (Optional[Dict[str, str]]) – Additional metadata dictionary for the message.
video_bytes (Optional[bytes]) – Optional bytes of a video associated with the message.
image_list (Optional[List[Image.Image]]) – Optional list of PIL Image objects associated with the message.
image_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the images associated with the message.
video_detail (Union[OpenAIVisionDetailType, str]) – Detail level of the videos associated with the message.
- Returns:
The new user message.
- Return type:
- meta_dict: Dict[str, Any] | None#
- parsed: Type[BaseModel] | dict | None = None#
- role_name: str#
- to_dict() Dict [source]#
Converts the message to a dictionary.
- Returns:
The converted dictionary.
- Return type:
dict
- to_openai_assistant_message() ChatCompletionAssistantMessageParam [source]#
Converts the message to an
OpenAIAssistantMessage
object.- Returns:
- The converted
OpenAIAssistantMessage
object.
- The converted
- Return type:
OpenAIAssistantMessage
- to_openai_message(role_at_backend: OpenAIBackendRole) ChatCompletionDeveloperMessageParam | ChatCompletionSystemMessageParam | ChatCompletionUserMessageParam | ChatCompletionAssistantMessageParam | ChatCompletionToolMessageParam | ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object.- Parameters:
role_at_backend (OpenAIBackendRole) – The role of the message in OpenAI chat system.
- Returns:
The converted
OpenAIMessage
object.- Return type:
OpenAIMessage
- to_openai_system_message() ChatCompletionSystemMessageParam [source]#
Converts the message to an
OpenAISystemMessage
object.- Returns:
- The converted
OpenAISystemMessage
object.
- The converted
- Return type:
OpenAISystemMessage
- to_openai_user_message() ChatCompletionUserMessageParam [source]#
Converts the message to an
OpenAIUserMessage
object.- Returns:
The converted
OpenAIUserMessage
object.- Return type:
OpenAIUserMessage
Convert BaseMessage to ShareGPT message
- Parameters:
function_format (FunctionCallFormatter) – Function call formatter to use. Defaults to Hermes.
- video_bytes: bytes | None = None#
- video_detail: Literal['auto', 'low', 'high'] = 'low'#
- class camel.messages.FunctionCallFormatter[source]#
Bases:
ABC
,Generic
[CallT
,ResponseT
]Abstract base class for function calling formats
- abstract extract_tool_calls(message: str) List[CallT] [source]#
Extract function call info from a message string
- abstract extract_tool_response(message: str) ResponseT | None [source]#
Extract function response info from a message string
- class camel.messages.FunctionCallingMessage(role_name: str, role_type: RoleType, meta_dict: Dict[str, Any] | None, content: str, video_bytes: bytes | None = None, image_list: List[Image] | None = None, image_detail: Literal['auto', 'low', 'high'] = 'auto', video_detail: Literal['auto', 'low', 'high'] = 'low', parsed: Type[BaseModel] | dict | None = None, func_name: str | None = None, args: Dict | None = None, result: Any | None = None)[source]#
Bases:
BaseMessage
Class for message objects used specifically for function-related messages.
- Parameters:
func_name (Optional[str]) – The name of the function used. (default:
None
)args (Optional[Dict]) – The dictionary of arguments passed to the function. (default:
None
)result (Optional[Any]) – The result of function execution. (default:
None
)
- args: Dict | None = None#
- content: str#
- func_name: str | None = None#
- meta_dict: Dict[str, Any] | None#
- result: Any | None = None#
- role_name: str#
- to_openai_assistant_message() ChatCompletionAssistantMessageParam [source]#
Converts the message to an
OpenAIAssistantMessage
object.- Returns:
- The converted
OpenAIAssistantMessage
object.
- The converted
- Return type:
OpenAIAssistantMessage
- to_openai_function_message() ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object with the role being “function”.- Returns:
- The converted
OpenAIMessage
object with its role being “function”.
- The converted
- Return type:
OpenAIMessage
- to_openai_message(role_at_backend: OpenAIBackendRole) ChatCompletionDeveloperMessageParam | ChatCompletionSystemMessageParam | ChatCompletionUserMessageParam | ChatCompletionAssistantMessageParam | ChatCompletionToolMessageParam | ChatCompletionFunctionMessageParam [source]#
Converts the message to an
OpenAIMessage
object.- Parameters:
role_at_backend (OpenAIBackendRole) – The role of the message in OpenAI chat system.
- Returns:
The converted
OpenAIMessage
object.- Return type:
OpenAIMessage
Convert FunctionCallingMessage to ShareGPT message.
- Parameters:
(FunctionCallFormatter[ToolCall (function_format) – optional): The function formatter to use. Defaults to None.
ToolResponse] – optional): The function formatter to use. Defaults to None.
:param : optional): The function formatter to use. Defaults to None.
- class camel.messages.HermesFunctionFormatter[source]#
Bases:
FunctionCallFormatter
[HermesToolCall
,HermesToolResponse
]Hermes-style function calling format implementation with validation
- extract_tool_calls(message: str) List[HermesToolCall] [source]#
Extracts all tool calls from the provided message string.
- Parameters:
message (str) – The input message string containing potential tool calls.
- Returns:
A list of parsed HermesToolCall objects.
- Return type:
List[HermesToolCall]
- extract_tool_response(message: str) HermesToolResponse | None [source]#
Extracts a single tool response from the provided message string.
- Parameters:
message (str) – The input message string containing a potential tool response.
- Returns:
- A parsed HermesToolResponse object,
or None if no valid response is found.
- Return type:
Optional[HermesToolResponse]
- format_tool_call(content: str, func_name: str, args: Dict[str, Any]) str [source]#
Formats a tool call message with the given content, function name, and arguments.
- Parameters:
content (str) – The content or message to be included in the tool call.
func_name (str) – The name of the function being called.
args (Dict[str, Any]) – A dictionary of arguments to be passed to the function.
- Returns:
- A formatted string representing the tool call in Hermes
format.
- Return type:
str
- format_tool_response(func_name: str, result: Any) str [source]#
Formats a tool response message with the given function name and result.
- Parameters:
func_name (str) – The name of the function whose result is being returned.
result (Any) – The result to be included in the tool response.
- Returns:
- A formatted string representing the tool response in Hermes
format.
- Return type:
str
- camel.messages.OpenAIAssistantMessage#
alias of
ChatCompletionAssistantMessageParam
- camel.messages.OpenAIFunctionMessage#
alias of
ChatCompletionFunctionMessageParam
- camel.messages.OpenAISystemMessage#
alias of
ChatCompletionSystemMessageParam
- camel.messages.OpenAIUserMessage#
alias of
ChatCompletionUserMessageParam
Bases:
RootModel
A full conversation in ShareGPT format with validation
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include – A set of fields to include in the output.
exclude – A set of fields to exclude from the output.
context – Additional context to pass to the serializer.
by_alias – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset – Whether to exclude fields that have not been explicitly set.
exclude_defaults – Whether to exclude fields that are set to their default value.
exclude_none – Whether to exclude fields that have a value of None.
round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.
Validate the conversation follows logical message order
Bases:
BaseModel
A single message in ShareGPT format with enhanced validation
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.