Source code for camel.loaders.apify_reader

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import TYPE_CHECKING, List, Optional

if TYPE_CHECKING:
    from apify_client.clients import DatasetClient

from camel.utils import api_keys_required


[docs] class Apify: r"""Apify is a platform that allows you to automate any web workflow. Args: api_key (Optional[str]): API key for authenticating with the Apify API. """ @api_keys_required( [ ("api_key", "APIFY_API_KEY"), ] ) def __init__( self, api_key: Optional[str] = None, ) -> None: from apify_client import ApifyClient self._api_key = api_key or os.environ.get("APIFY_API_KEY") self.client = ApifyClient(token=self._api_key)
[docs] def run_actor( self, actor_id: str, run_input: Optional[dict] = None, content_type: Optional[str] = None, build: Optional[str] = None, max_items: Optional[int] = None, memory_mbytes: Optional[int] = None, timeout_secs: Optional[int] = None, webhooks: Optional[list] = None, wait_secs: Optional[int] = None, ) -> Optional[dict]: r"""Run an actor on the Apify platform. Args: actor_id (str): The ID of the actor to run. run_input (Optional[dict]): The input data for the actor. Defaults to `None`. content_type (str, optional): The content type of the input. build (str, optional): Specifies the Actor build to run. It can be either a build tag or build number. By default, the run uses the build specified in the default run configuration for the Actor (typically latest). max_items (int, optional): Maximum number of results that will be returned by this run. If the Actor is charged per result, you will not be charged for more results than the given limit. memory_mbytes (int, optional): Memory limit for the run, in megabytes. By default, the run uses a memory limit specified in the default run configuration for the Actor. timeout_secs (int, optional): Optional timeout for the run, in seconds. By default, the run uses timeout specified in the default run configuration for the Actor. webhooks (list, optional): Optional webhooks (https://docs.apify.com/webhooks) associated with the Actor run, which can be used to receive a notification, e.g. when the Actor finished or failed. If you already have a webhook set up for the Actor, you do not have to add it again here. wait_secs (int, optional): The maximum number of seconds the server waits for finish. If not provided, waits indefinitely. Returns: Optional[dict]: The output data from the actor if successful. # please use the 'defaultDatasetId' to get the dataset Raises: RuntimeError: If the actor fails to run. """ try: return self.client.actor(actor_id).call( run_input=run_input, content_type=content_type, build=build, max_items=max_items, memory_mbytes=memory_mbytes, timeout_secs=timeout_secs, webhooks=webhooks, wait_secs=wait_secs, ) except Exception as e: raise RuntimeError(f"Failed to run actor {actor_id}: {e}") from e
[docs] def get_dataset_client( self, dataset_id: str, ) -> "DatasetClient": r"""Get a dataset client from the Apify platform. Args: dataset_id (str): The ID of the dataset to get the client for. Returns: DatasetClient: The dataset client. Raises: RuntimeError: If the dataset client fails to be retrieved. """ try: return self.client.dataset(dataset_id) except Exception as e: raise RuntimeError( f"Failed to get dataset {dataset_id}: {e}" ) from e
[docs] def get_dataset( self, dataset_id: str, ) -> Optional[dict]: r"""Get a dataset from the Apify platform. Args: dataset_id (str): The ID of the dataset to get. Returns: dict: The dataset. Raises: RuntimeError: If the dataset fails to be retrieved. """ try: return self.get_dataset_client(dataset_id).get() except Exception as e: raise RuntimeError( f"Failed to get dataset {dataset_id}: {e}" ) from e
[docs] def update_dataset( self, dataset_id: str, name: str, ) -> dict: r"""Update a dataset on the Apify platform. Args: dataset_id (str): The ID of the dataset to update. name (str): The new name for the dataset. Returns: dict: The updated dataset. Raises: RuntimeError: If the dataset fails to be updated. """ try: return self.get_dataset_client(dataset_id).update(name=name) except Exception as e: raise RuntimeError( f"Failed to update dataset {dataset_id}: {e}" ) from e
[docs] def get_dataset_items( self, dataset_id: str, ) -> List: r"""Get items from a dataset on the Apify platform. Args: dataset_id (str): The ID of the dataset to get items from. Returns: list: The items in the dataset. Raises: RuntimeError: If the items fail to be retrieved. """ try: items = self.get_dataset_client(dataset_id).list_items().items return items except Exception as e: raise RuntimeError( f"Failed to get dataset items {dataset_id}: {e}" ) from e
[docs] def get_datasets( self, unnamed: Optional[bool] = None, limit: Optional[int] = None, offset: Optional[int] = None, desc: Optional[bool] = None, ) -> List[dict]: r"""Get all named datasets from the Apify platform. Args: unnamed (bool, optional): Whether to include unnamed key-value stores in the list limit (int, optional): How many key-value stores to retrieve offset (int, optional): What key-value store to include as first when retrieving the list desc (bool, optional): Whether to sort the key-value stores in descending order based on their modification date Returns: List[dict]: The datasets. Raises: RuntimeError: If the datasets fail to be retrieved. """ try: return ( self.client.datasets() .list(unnamed=unnamed, limit=limit, offset=offset, desc=desc) .items ) except Exception as e: raise RuntimeError(f"Failed to get datasets: {e}") from e