Source code for camel.models.mistral_model

# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
# Licensed under the Apache License, Version 2.0 (the “License”);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an “AS IS” BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========== Copyright 2023 @ CAMEL-AI.org. All Rights Reserved. ===========
import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union

if TYPE_CHECKING:
    from mistralai.models import (
        ChatCompletionResponse,
        Messages,
    )

from camel.configs import MISTRAL_API_PARAMS, MistralConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import ChatCompletion, ModelType
from camel.utils import (
    BaseTokenCounter,
    OpenAITokenCounter,
    api_keys_required,
    dependencies_required,
)

try:
    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import LLMEvent, record
    else:
        raise ImportError
except (ImportError, AttributeError):
    LLMEvent = None


[docs] class MistralModel(BaseModelBackend): r"""Mistral API in a unified BaseModelBackend interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created, one of MISTRAL_* series. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`Mistral.chat.complete()`. If:obj:`None`, :obj:`MistralConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the mistral service. (default: :obj:`None`) url (Optional[str], optional): The url to the mistral service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) """ @dependencies_required('mistralai') def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: from mistralai import Mistral if model_config_dict is None: model_config_dict = MistralConfig().as_dict() api_key = api_key or os.environ.get("MISTRAL_API_KEY") url = url or os.environ.get("MISTRAL_API_BASE_URL") super().__init__( model_type, model_config_dict, api_key, url, token_counter ) self._client = Mistral(api_key=self._api_key, server_url=self._url) def _to_openai_response( self, response: 'ChatCompletionResponse' ) -> ChatCompletion: tool_calls = None if ( response.choices and response.choices[0].message and response.choices[0].message.tool_calls is not None ): tool_calls = [ dict( id=tool_call.id, # type: ignore[union-attr] function={ "name": tool_call.function.name, # type: ignore[union-attr] "arguments": tool_call.function.arguments, # type: ignore[union-attr] }, type=tool_call.type, # type: ignore[union-attr] ) for tool_call in response.choices[0].message.tool_calls ] obj = ChatCompletion.construct( id=response.id, choices=[ dict( index=response.choices[0].index, # type: ignore[index] message={ "role": response.choices[0].message.role, # type: ignore[index,union-attr] "content": response.choices[0].message.content, # type: ignore[index,union-attr] "tool_calls": tool_calls, }, finish_reason=response.choices[0].finish_reason # type: ignore[index] if response.choices[0].finish_reason # type: ignore[index] else None, ) ], created=response.created, model=response.model, object="chat.completion", usage=response.usage, ) return obj def _to_mistral_chatmessage( self, messages: List[OpenAIMessage], ) -> List["Messages"]: import uuid from mistralai.models import ( AssistantMessage, FunctionCall, SystemMessage, ToolCall, ToolMessage, UserMessage, ) new_messages = [] for msg in messages: tool_id = uuid.uuid4().hex[:9] tool_call_id = uuid.uuid4().hex[:9] role = msg.get("role") function_call = msg.get("function_call") content = msg.get("content") mistral_function_call = None if function_call: mistral_function_call = FunctionCall( name=function_call.get("name"), # type: ignore[attr-defined] arguments=function_call.get("arguments"), # type: ignore[attr-defined] ) tool_calls = None if mistral_function_call: tool_calls = [ ToolCall(function=mistral_function_call, id=tool_id) ] if role == "user": new_messages.append(UserMessage(content=content)) # type: ignore[arg-type] elif role == "assistant": new_messages.append( AssistantMessage(content=content, tool_calls=tool_calls) # type: ignore[arg-type] ) elif role == "system": new_messages.append(SystemMessage(content=content)) # type: ignore[arg-type] elif role in {"tool", "function"}: new_messages.append( ToolMessage( content=content, # type: ignore[arg-type] tool_call_id=tool_call_id, name=msg.get("name"), # type: ignore[arg-type] ) ) else: raise ValueError(f"Unsupported message role: {role}") return new_messages # type: ignore[return-value] @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. # NOTE: Temporarily using `OpenAITokenCounter` due to a current issue # with installing `mistral-common` alongside `mistralai`. # Refer to: https://github.com/mistralai/mistral-common/issues/37 Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = OpenAITokenCounter( model=ModelType.GPT_4O_MINI ) return self._token_counter
[docs] @api_keys_required("MISTRAL_API_KEY") def run( self, messages: List[OpenAIMessage], ) -> ChatCompletion: r"""Runs inference of Mistral chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: ChatCompletion. """ mistral_messages = self._to_mistral_chatmessage(messages) response = self._client.chat.complete( messages=mistral_messages, model=self.model_type, **self.model_config_dict, ) openai_response = self._to_openai_response(response) # type: ignore[arg-type] # Add AgentOps LLM Event tracking if LLMEvent: llm_event = LLMEvent( thread_id=openai_response.id, prompt=" ".join( [message.get("content") for message in messages] # type: ignore[misc] ), prompt_tokens=openai_response.usage.prompt_tokens, # type: ignore[union-attr] completion=openai_response.choices[0].message.content, completion_tokens=openai_response.usage.completion_tokens, # type: ignore[union-attr] model=self.model_type, ) record(llm_event) return openai_response
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to Mistral API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to Mistral API. """ for param in self.model_config_dict: if param not in MISTRAL_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into Mistral model backend." )
@property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Current it's not supported. Returns: bool: Whether the model is in stream mode. """ return False