Source code for camel.toolkits.excel_toolkit
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import List, Optional
import pandas as pd
from camel.logger import get_logger
from camel.toolkits.base import BaseToolkit
from camel.toolkits.function_tool import FunctionTool
from camel.utils import MCPServer
logger = get_logger(__name__)
[docs]
@MCPServer()
class ExcelToolkit(BaseToolkit):
r"""A class representing a toolkit for extract detailed cell information
from an Excel file.
This class provides methods extracting detailed content from Excel files
(including .xls, .xlsx,.csv), and converting the data into
Markdown formatted table.
"""
def __init__(
self,
timeout: Optional[float] = None,
):
r"""Initializes a new instance of the ExcelToolkit class.
Args:
timeout (Optional[float]): The timeout value for API requests
in seconds. If None, no timeout is applied.
(default: :obj:`None`)
"""
super().__init__(timeout=timeout)
def _convert_to_markdown(self, df: pd.DataFrame) -> str:
r"""Convert DataFrame to Markdown format table.
Args:
df (pd.DataFrame): DataFrame containing the Excel data.
Returns:
str: Markdown formatted table.
"""
from tabulate import tabulate
md_table = tabulate(df, headers='keys', tablefmt='pipe')
return str(md_table)
[docs]
def extract_excel_content(self, document_path: str) -> str:
r"""Extract detailed cell information from an Excel file, including
multiple sheets.
Args:
document_path (str): The path of the Excel file.
Returns:
str: Extracted excel information, including details of each sheet.
"""
from openpyxl import load_workbook
from xls2xlsx import XLS2XLSX
logger.debug(
f"Calling extract_excel_content with document_path"
f": {document_path}"
)
if not (
document_path.endswith("xls")
or document_path.endswith("xlsx")
or document_path.endswith("csv")
):
logger.error("Only xls, xlsx, csv files are supported.")
return (
f"Failed to process file {document_path}: "
f"It is not excel format. Please try other ways."
)
if document_path.endswith("csv"):
try:
df = pd.read_csv(document_path)
md_table = self._convert_to_markdown(df)
return f"CSV File Processed:\n{md_table}"
except Exception as e:
logger.error(f"Failed to process file {document_path}: {e}")
return f"Failed to process file {document_path}: {e}"
if document_path.endswith("xls"):
output_path = document_path.replace(".xls", ".xlsx")
x2x = XLS2XLSX(document_path)
x2x.to_xlsx(output_path)
document_path = output_path
# Load the Excel workbook
wb = load_workbook(document_path, data_only=True)
sheet_info_list = []
# Iterate through all sheets
for sheet in wb.sheetnames:
ws = wb[sheet]
cell_info_list = []
for row in ws.iter_rows():
for cell in row:
row_num = cell.row
col_letter = cell.column_letter
cell_value = cell.value
font_color = None
if (
cell.font
and cell.font.color
and "rgb=None" not in str(cell.font.color)
): # Handle font color
font_color = cell.font.color.rgb
fill_color = None
if (
cell.fill
and cell.fill.fgColor
and "rgb=None" not in str(cell.fill.fgColor)
): # Handle fill color
fill_color = cell.fill.fgColor.rgb
cell_info_list.append(
{
"index": f"{row_num}{col_letter}",
"value": cell_value,
"font_color": font_color,
"fill_color": fill_color,
}
)
# Convert the sheet to a DataFrame and then to markdown
sheet_df = pd.read_excel(
document_path, sheet_name=sheet, engine='openpyxl'
)
markdown_content = self._convert_to_markdown(sheet_df)
# Collect all information for the sheet
sheet_info = {
"sheet_name": sheet,
"cell_info_list": cell_info_list,
"markdown_content": markdown_content,
}
sheet_info_list.append(sheet_info)
result_str = ""
for sheet_info in sheet_info_list:
result_str += f"""
Sheet Name: {sheet_info['sheet_name']}
Cell information list:
{sheet_info['cell_info_list']}
Markdown View of the content:
{sheet_info['markdown_content']}
{'-'*40}
"""
return result_str
[docs]
def get_tools(self) -> List[FunctionTool]:
r"""Returns a list of FunctionTool objects representing the functions
in the toolkit.
Returns:
List[FunctionTool]: A list of FunctionTool objects representing
the functions in the toolkit.
"""
return [
FunctionTool(self.extract_excel_content),
]