Source code for camel.toolkits.excel_toolkit

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

from typing import List, Optional

import pandas as pd

from camel.logger import get_logger
from camel.toolkits.base import BaseToolkit
from camel.toolkits.function_tool import FunctionTool
from camel.utils import MCPServer

logger = get_logger(__name__)


[docs] @MCPServer() class ExcelToolkit(BaseToolkit): r"""A class representing a toolkit for extract detailed cell information from an Excel file. This class provides methods extracting detailed content from Excel files (including .xls, .xlsx,.csv), and converting the data into Markdown formatted table. """ def __init__( self, timeout: Optional[float] = None, ): r"""Initializes a new instance of the ExcelToolkit class. Args: timeout (Optional[float]): The timeout value for API requests in seconds. If None, no timeout is applied. (default: :obj:`None`) """ super().__init__(timeout=timeout) def _convert_to_markdown(self, df: pd.DataFrame) -> str: r"""Convert DataFrame to Markdown format table. Args: df (pd.DataFrame): DataFrame containing the Excel data. Returns: str: Markdown formatted table. """ from tabulate import tabulate md_table = tabulate(df, headers='keys', tablefmt='pipe') return str(md_table)
[docs] def extract_excel_content(self, document_path: str) -> str: r"""Extract detailed cell information from an Excel file, including multiple sheets. Args: document_path (str): The path of the Excel file. Returns: str: Extracted excel information, including details of each sheet. """ from openpyxl import load_workbook from xls2xlsx import XLS2XLSX logger.debug( f"Calling extract_excel_content with document_path" f": {document_path}" ) if not ( document_path.endswith("xls") or document_path.endswith("xlsx") or document_path.endswith("csv") ): logger.error("Only xls, xlsx, csv files are supported.") return ( f"Failed to process file {document_path}: " f"It is not excel format. Please try other ways." ) if document_path.endswith("csv"): try: df = pd.read_csv(document_path) md_table = self._convert_to_markdown(df) return f"CSV File Processed:\n{md_table}" except Exception as e: logger.error(f"Failed to process file {document_path}: {e}") return f"Failed to process file {document_path}: {e}" if document_path.endswith("xls"): output_path = document_path.replace(".xls", ".xlsx") x2x = XLS2XLSX(document_path) x2x.to_xlsx(output_path) document_path = output_path # Load the Excel workbook wb = load_workbook(document_path, data_only=True) sheet_info_list = [] # Iterate through all sheets for sheet in wb.sheetnames: ws = wb[sheet] cell_info_list = [] for row in ws.iter_rows(): for cell in row: row_num = cell.row col_letter = cell.column_letter cell_value = cell.value font_color = None if ( cell.font and cell.font.color and "rgb=None" not in str(cell.font.color) ): # Handle font color font_color = cell.font.color.rgb fill_color = None if ( cell.fill and cell.fill.fgColor and "rgb=None" not in str(cell.fill.fgColor) ): # Handle fill color fill_color = cell.fill.fgColor.rgb cell_info_list.append( { "index": f"{row_num}{col_letter}", "value": cell_value, "font_color": font_color, "fill_color": fill_color, } ) # Convert the sheet to a DataFrame and then to markdown sheet_df = pd.read_excel( document_path, sheet_name=sheet, engine='openpyxl' ) markdown_content = self._convert_to_markdown(sheet_df) # Collect all information for the sheet sheet_info = { "sheet_name": sheet, "cell_info_list": cell_info_list, "markdown_content": markdown_content, } sheet_info_list.append(sheet_info) result_str = "" for sheet_info in sheet_info_list: result_str += f""" Sheet Name: {sheet_info['sheet_name']} Cell information list: {sheet_info['cell_info_list']} Markdown View of the content: {sheet_info['markdown_content']} {'-'*40} """ return result_str
[docs] def get_tools(self) -> List[FunctionTool]: r"""Returns a list of FunctionTool objects representing the functions in the toolkit. Returns: List[FunctionTool]: A list of FunctionTool objects representing the functions in the toolkit. """ return [ FunctionTool(self.extract_excel_content), ]