Source code for camel.agents.chat_agent

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from __future__ import annotations

import json
import logging
import re
import uuid
from collections import defaultdict
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Tuple,
    Type,
    Union,
)

from openai.types.chat import ChatCompletionMessageToolCall
from openai.types.chat.chat_completion_message_tool_call import Function
from pydantic import BaseModel, ValidationError

from camel.agents.base import BaseAgent
from camel.memories import (
    AgentMemory,
    ChatHistoryMemory,
    MemoryRecord,
    ScoreBasedContextCreator,
)
from camel.messages import BaseMessage, FunctionCallingMessage, OpenAIMessage
from camel.models import (
    BaseModelBackend,
    ModelFactory,
    ModelManager,
    ModelProcessingError,
)
from camel.responses import ChatAgentResponse
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelPlatformType,
    ModelType,
    OpenAIBackendRole,
    RoleType,
)
from camel.utils import (
    func_string_to_callable,
    generate_prompt_for_structured_output,
    get_model_encoding,
    get_pydantic_object_schema,
    json_to_function_code,
)

if TYPE_CHECKING:
    from openai import Stream

    from camel.terminators import ResponseTerminator
    from camel.toolkits import FunctionTool


logger = logging.getLogger(__name__)

# AgentOps decorator setting
try:
    import os

    if os.getenv("AGENTOPS_API_KEY") is not None:
        from agentops import track_agent
    else:
        raise ImportError
except (ImportError, AttributeError):
    from camel.utils import track_agent


[docs] class FunctionCallingRecord(BaseModel): r"""Historical records of functions called in the conversation. Attributes: func_name (str): The name of the function being called. args (Dict[str, Any]): The dictionary of arguments passed to the function. result (Any): The execution result of calling this function. """ func_name: str args: Dict[str, Any] result: Any def __str__(self) -> str: r"""Overridden version of the string function. Returns: str: Modified string to represent the function calling. """ return ( f"Function Execution: {self.func_name}\n" f"\tArgs: {self.args}\n" f"\tResult: {self.result}" )
[docs] def as_dict(self) -> dict[str, Any]: r"""Returns the function calling record as a dictionary. Returns: dict[str, Any]: The function calling record as a dictionary. """ return self.model_dump()
[docs] @track_agent(name="ChatAgent") class ChatAgent(BaseAgent): r"""Class for managing conversations of CAMEL Chat Agents. Args: system_message (Union[BaseMessage, str], optional): The system message for the chat agent. model (BaseModelBackend, optional): The model backend to use for generating responses. (default: :obj:`ModelPlatformType.DEFAULT` with `ModelType.DEFAULT`) memory (AgentMemory, optional): The agent memory for managing chat messages. If `None`, a :obj:`ChatHistoryMemory` will be used. (default: :obj:`None`) message_window_size (int, optional): The maximum number of previous messages to include in the context window. If `None`, no windowing is performed. (default: :obj:`None`) token_limit (int, optional): The maximum number of tokens in a context. The context will be automatically pruned to fulfill the limitation. If `None`, it will be set according to the backend model. (default: :obj:`None`) output_language (str, optional): The language to be output by the agent. (default: :obj:`None`) tools (Optional[List[Union[FunctionTool, Callable]]], optional): List of available :obj:`FunctionTool` or :obj:`Callable`. (default: :obj:`None`) external_tools (Optional[List[Union[FunctionTool, Callable]]], optional): List of external tools (:obj:`FunctionTool` or or :obj:`Callable`) bind to one chat agent. When these tools are called, the agent will directly return the request instead of processing it. (default: :obj:`None`) response_terminators (List[ResponseTerminator], optional): List of :obj:`ResponseTerminator` bind to one chat agent. (default: :obj:`None`) scheduling_strategy (str): name of function that defines how to select the next model in ModelManager. (default: :str:`round_robin`) single_iteration (bool): Whether to let the agent perform only one model calling at each step. (default: :obj:`False`) """ def __init__( self, system_message: Optional[Union[BaseMessage, str]] = None, model: Optional[ Union[BaseModelBackend, List[BaseModelBackend]] ] = None, memory: Optional[AgentMemory] = None, message_window_size: Optional[int] = None, token_limit: Optional[int] = None, output_language: Optional[str] = None, tools: Optional[List[Union[FunctionTool, Callable]]] = None, external_tools: Optional[List[Union[FunctionTool, Callable]]] = None, response_terminators: Optional[List[ResponseTerminator]] = None, scheduling_strategy: str = "round_robin", single_iteration: bool = False, ) -> None: # Initialize the system message, converting string to BaseMessage if needed if isinstance(system_message, str): system_message = BaseMessage.make_assistant_message( role_name='Assistant', content=system_message ) self.orig_sys_message: Optional[BaseMessage] = system_message self._system_message: Optional[BaseMessage] = system_message self.role_name: str = ( getattr(system_message, 'role_name', None) or "assistant" ) self.role_type: RoleType = ( getattr(system_message, 'role_type', None) or RoleType.ASSISTANT ) self.model_backend = ModelManager( model if model is not None else ModelFactory.create( model_platform=ModelPlatformType.DEFAULT, model_type=ModelType.DEFAULT, ), scheduling_strategy=scheduling_strategy, ) self.model_type = self.model_backend.model_type # Initialize tools self.tools: List[FunctionTool] = ( self._initialize_tools(tools) if tools else [] ) self.external_tools: List[FunctionTool] = ( self._initialize_tools(external_tools) if external_tools else [] ) self.external_tool_names: List[str] = [ tool.get_function_name() for tool in self.external_tools ] self.all_tools = self.tools + self.external_tools or [] # Create tool dictionaries and configure backend tools if necessary self.tool_dict = { tool.get_function_name(): tool for tool in self.all_tools } # If the user set tools from `ChatAgent`, it will override the # configured tools in `BaseModelBackend`. if self.all_tools: logger.warning( "Overriding the configured tools in `BaseModelBackend` with the tools from `ChatAgent`." ) tool_schema_list = [ tool.get_openai_tool_schema() for tool in self.all_tools ] self.model_backend.model_config_dict['tools'] = tool_schema_list self.model_token_limit = token_limit or self.model_backend.token_limit context_creator = ScoreBasedContextCreator( self.model_backend.token_counter, self.model_token_limit, ) self.memory: AgentMemory = memory or ChatHistoryMemory( context_creator, window_size=message_window_size ) self.output_language: Optional[str] = output_language if self.output_language is not None: self.set_output_language(self.output_language) self.terminated: bool = False self.response_terminators = response_terminators or [] self.init_messages() self.tool_prompt_added = False self.single_iteration = single_iteration def _initialize_tools( self, tools: List[Union[FunctionTool, Callable]] ) -> List[FunctionTool]: r"""Helper method to initialize tools as FunctionTool instances.""" from camel.toolkits import FunctionTool func_tools = [] for tool in tools: if not isinstance(tool, FunctionTool): tool = FunctionTool(tool) func_tools.append(tool) return func_tools
[docs] def add_tool( self, tool: Union[FunctionTool, Callable], is_external: bool = False ) -> None: r"""Add a tool to the agent, specifying if it's an external tool.""" # Initialize the tool initialized_tool = self._initialize_tools([tool]) # Update tools or external tools based on is_external flag if is_external: self.external_tools = self.external_tools + initialized_tool self.external_tool_names.extend( tool.get_function_name() for tool in initialized_tool ) else: self.tools = self.tools + initialized_tool # Rebuild all_tools, and tool_dict self.all_tools = self.tools + self.external_tools self.tool_dict = { tool.get_function_name(): tool for tool in self.all_tools } tool_schema_list = [ tool.get_openai_tool_schema() for tool in self.all_tools ] self.model_backend.model_config_dict['tools'] = tool_schema_list
[docs] def remove_tool(self, tool_name: str, is_external: bool = False) -> bool: r"""Remove a tool by name, specifying if it's an external tool.""" tool_list = self.external_tools if is_external else self.tools if not tool_list: return False for tool in tool_list: if tool.get_function_name() == tool_name: tool_list.remove(tool) if is_external: self.external_tool_names.remove(tool_name) # Reinitialize the tool dictionary self.all_tools = (self.tools or []) + ( self.external_tools or [] ) self.tool_dict = { tool.get_function_name(): tool for tool in self.all_tools } tool_schema_list = [ tool.get_openai_tool_schema() for tool in self.all_tools ] self.model_backend.model_config_dict['tools'] = ( tool_schema_list ) return True return False
[docs] def list_tools(self) -> dict: r"""List all tools, separated into normal and external tools.""" normal_tools = [ tool.get_function_name() for tool in (self.tools or []) ] external_tools = [ tool.get_function_name() for tool in (self.external_tools or []) ] return {"normal_tools": normal_tools, "external_tools": external_tools}
# ruff: noqa: E501 def _generate_tool_prompt(self, tool_schema_list: List[Dict]) -> str: r"""Generates a tool prompt based on the provided tool schema list. Args: tool_schema_list (List[Dict]): A list of dictionaries, each containing a tool schema. Returns: str: A string representing the tool prompt. """ tool_prompts = [] for tool in tool_schema_list: tool_info = tool['function'] tool_name = tool_info['name'] tool_description = tool_info['description'] tool_json = json.dumps(tool_info, indent=4) prompt = f"Use the function '{tool_name}' to '{tool_description}':\n{tool_json}\n" tool_prompts.append(prompt) tool_prompt_str = "\n".join(tool_prompts) final_prompt = f""" You have access to the following functions: {tool_prompt_str} If you choose to call a function ONLY reply in the following format with no prefix or suffix: <function=example_function_name>{{"example_name": "example_value"}}</function> Reminder: - Function calls MUST follow the specified format, start with <function= and end with </function> - Required parameters MUST be specified - Only call one function at a time - Put the entire function call reply on one line - If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls """ return final_prompt def _parse_tool_response(self, response: str): r"""Parses the tool response to extract the function name and arguments. Args: response (str): The response from the model containing the function call. Returns: Optional[Dict[str, Any]]: The parsed function name and arguments if found, otherwise :obj:`None`. """ function_regex = r"<function=(\w+)>(.*?)</function>" match = re.search(function_regex, response) if match: function_name, args_string = match.groups() try: args = json.loads(args_string) return {"function": function_name, "arguments": args} except json.JSONDecodeError as error: logger.error(f"Error parsing function arguments: {error}") return None return None
[docs] def reset(self): r"""Resets the :obj:`ChatAgent` to its initial state.""" self.terminated = False self.init_messages() for terminator in self.response_terminators: terminator.reset()
@property def system_message(self) -> Optional[BaseMessage]: r"""The getter method for the property :obj:`system_message`. Returns: Optional[BaseMessage]: The system message of this agent if set, else :obj:`None`. """ return self._system_message @system_message.setter def system_message(self, message: BaseMessage) -> None: r"""The setter method for the property :obj:`system_message`. Args: message (BaseMessage): The message to be set as the new system message of this agent. """ self._system_message = message
[docs] def is_tools_added(self) -> bool: r"""Whether tool calling is enabled for this agent. Returns: bool: Whether tool calling is enabled for this agent, determined by whether the dictionary of tools is empty. """ return len(self.tool_dict) > 0
[docs] def update_memory( self, message: BaseMessage, role: OpenAIBackendRole ) -> None: r"""Updates the agent memory with a new message. Args: message (BaseMessage): The new message to add to the stored messages. role (OpenAIBackendRole): The backend role type. """ self.memory.write_record( MemoryRecord(message=message, role_at_backend=role) )
[docs] def set_output_language(self, output_language: str) -> BaseMessage: r"""Sets the output language for the system message. This method updates the output language for the system message. The output language determines the language in which the output text should be generated. Args: output_language (str): The desired output language. Returns: BaseMessage: The updated system message object. """ self.output_language = output_language language_prompt = ( "\nRegardless of the input language, " f"you must output text in {output_language}." ) if self.orig_sys_message is not None: content = self.orig_sys_message.content + language_prompt self._system_message = self.orig_sys_message.create_new_instance( content ) else: self._system_message = BaseMessage.make_assistant_message( role_name="Assistant", content=language_prompt, ) system_record = MemoryRecord( message=self._system_message, role_at_backend=OpenAIBackendRole.SYSTEM, ) self.memory.clear() self.memory.write_record(system_record) return self._system_message
[docs] def get_info( self, session_id: Optional[str], usage: Optional[Dict[str, int]], termination_reasons: List[str], num_tokens: int, tool_calls: List[FunctionCallingRecord], external_tool_request: Optional[ChatCompletionMessageToolCall] = None, ) -> Dict[str, Any]: r"""Returns a dictionary containing information about the chat session. Args: session_id (str, optional): The ID of the chat session. usage (Dict[str, int], optional): Information about the usage of the LLM. termination_reasons (List[str]): The reasons for the termination of the chat session. num_tokens (int): The number of tokens used in the chat session. tool_calls (List[FunctionCallingRecord]): The list of function calling records, containing the information of called tools. external_tool_request (Optional[ChatCompletionMessageToolCall], optional): The tool calling request of external tools from the model. These requests are directly returned to the user instead of being processed by the agent automatically. (default: :obj:`None`) Returns: Dict[str, Any]: The chat session information. """ return { "id": session_id, "usage": usage, "termination_reasons": termination_reasons, "num_tokens": num_tokens, "tool_calls": tool_calls, "external_tool_request": external_tool_request, }
[docs] def init_messages(self) -> None: r"""Initializes the stored messages list with the current system message. """ if self._system_message is not None: system_record = MemoryRecord( message=self._system_message, role_at_backend=OpenAIBackendRole.SYSTEM, ) self.memory.clear() self.memory.write_record(system_record) else: self.memory.clear()
[docs] def record_message(self, message: BaseMessage) -> None: r"""Records the externally provided message into the agent memory as if it were an answer of the :obj:`ChatAgent` from the backend. Currently, the choice of the critic is submitted with this method. Args: message (BaseMessage): An external message to be recorded in the memory. """ self.update_memory(message, OpenAIBackendRole.ASSISTANT)
[docs] def step( self, input_message: Union[BaseMessage, str], response_format: Optional[Type[BaseModel]] = None, ) -> ChatAgentResponse: r"""Executes a single step in the chat session, generating a response to the input message. Args: input_message (Union[BaseMessage, str]): The input message for the agent. If provided as a BaseMessage, the `role` is adjusted to `user` to indicate an external message. response_format (Optional[Type[BaseModel]], optional): A Pydantic model defining the expected structure of the response. Used to generate a structured response if provided. (default: :obj:`None`) Returns: ChatAgentResponse: Contains output messages, a termination status flag, and session information. """ if ( self.model_backend.model_config_dict.get("response_format") and response_format ): raise ValueError( "The `response_format` parameter cannot be set both in " "the model configuration and in the ChatAgent step." ) self.original_model_dict = self.model_backend.model_config_dict if response_format and self.model_type in {"gpt-4o", "gpt-4o-mini"}: self.model_backend.model_config_dict = ( self.original_model_dict.copy() ) self.model_backend.model_config_dict["response_format"] = ( response_format ) # Convert input message to BaseMessage if necessary if isinstance(input_message, str): input_message = BaseMessage.make_user_message( role_name='User', content=input_message ) # Handle tool prompt injection if needed if ( self.is_tools_added() and not self.model_type.support_native_tool_calling and not self.tool_prompt_added ): self._inject_tool_prompt() # Add user input to memory self.update_memory(input_message, OpenAIBackendRole.USER) return self._handle_step(response_format, self.single_iteration)
def _inject_tool_prompt(self) -> None: r"""Generate and add the tool prompt to memory.""" tool_prompt = self._generate_tool_prompt( self.model_backend.model_config_dict["tools"] ) tool_msg = BaseMessage.make_assistant_message( role_name="Assistant", content=tool_prompt ) self.update_memory(tool_msg, OpenAIBackendRole.SYSTEM) self.tool_prompt_added = True def _handle_step( self, response_format: Optional[Type[BaseModel]], single_step: bool, ) -> ChatAgentResponse: r"""Handles a single or multi-step interaction.""" if ( self.model_backend.model_config_dict.get("tool_choice") == "required" and not single_step ): raise ValueError( "`tool_choice` cannot be set to `required` for multi-step" " mode. To proceed, set `single_iteration` to `True`." ) # Record function calls made during the session tool_call_records: List[FunctionCallingRecord] = [] external_tool_request = None while True: try: openai_messages, num_tokens = self.memory.get_context() except RuntimeError as e: self.model_backend.model_config_dict = self.original_model_dict return self._step_token_exceed( e.args[1], tool_call_records, "max_tokens_exceeded" ) # Prompt engineering approach for structured output for non-native tool calling models inject_prompt_for_structured_output = ( response_format and not self.model_type.support_native_structured_output ) if inject_prompt_for_structured_output: # update last openai message usr_msg = openai_messages.pop() usr_msg["content"] = generate_prompt_for_structured_output( response_format, usr_msg["content"], # type: ignore [arg-type] ) openai_messages.append(usr_msg) # Process model response ( response, output_messages, finish_reasons, usage_dict, response_id, ) = self._step_model_response(openai_messages, num_tokens) # Try to parse structured output to return a Pydantic object if inject_prompt_for_structured_output and isinstance( response, ChatCompletion ): content = response.choices[0].message.content try: json_content = json.loads(str(content)) output_messages[0].parsed = response_format(**json_content) # type: ignore [assignment, misc] except json.JSONDecodeError as e: logger.error( f"Failed in parsing the output into JSON: {e}" ) output_messages[0].parsed = None except ValidationError as e: logger.warning( "Successfully generating JSON response, " "but failed in parsing it into Pydantic object :" f"{e}, return the JSON response in parsed field" ) output_messages[0].parsed = json_content # Finalize on standard response in multi-step mode if self._is_standard_response(response): break # Handle tool requests tool_request = self._extract_tool_call(response) if isinstance(response, ChatCompletion) and tool_request: response.choices[0].message.tool_calls = [tool_request] tool_call_records.append( self._step_tool_call_and_update(response) ) if tool_request.function.name in self.external_tool_names: external_tool_request = tool_request info = self._step_get_info( output_messages, finish_reasons, usage_dict, response_id, tool_call_records, num_tokens, tool_request, ) self._log_final_output(output_messages) self.model_backend.model_config_dict = ( self.original_model_dict ) return ChatAgentResponse( msgs=output_messages, terminated=self.terminated, info=info, ) # Single-step mode ends after one iteration if single_step: break # Optional structured output via function calling if ( response_format and not inject_prompt_for_structured_output and self.model_type not in { "gpt-4o", "gpt-4o-mini", } ): ( output_messages, finish_reasons, usage_dict, response_id, tool_call, num_tokens, ) = self._structure_output_with_function(response_format) tool_call_records.append(tool_call) # Final info and response info = self._step_get_info( output_messages, finish_reasons, usage_dict, response_id, tool_call_records, num_tokens, external_tool_request, ) self._log_final_output(output_messages) self.model_backend.model_config_dict = self.original_model_dict return ChatAgentResponse( msgs=output_messages, terminated=self.terminated, info=info ) def _extract_tool_call( self, response: Any ) -> Optional[ChatCompletionMessageToolCall]: r"""Extract the tool call from the model response, if present. Args: response (Any): The model's response object. Returns: Optional[ChatCompletionMessageToolCall]: The parsed tool call if present, otherwise None. """ # Check if the response contains tool calls if ( self.is_tools_added() and not self.model_type.support_native_tool_calling and "</function>" in response.choices[0].message.content ): parsed_content = self._parse_tool_response( response.choices[0].message.content ) if parsed_content: return ChatCompletionMessageToolCall( id=str(uuid.uuid4()), function=Function( arguments=str(parsed_content["arguments"]).replace( "'", '"' ), name=str(parsed_content["function"]), ), type="function", ) elif ( self.is_tools_added() and self.model_type.support_native_tool_calling and response.choices[0].message.tool_calls ): return response.choices[0].message.tool_calls[0] # No tool call found return None def _is_standard_response(self, response: Any) -> bool: r"""Determine if the provided response is a standard reply without tool calls. Args: response (Any): The response object to evaluate. Returns: bool: `True` if the response is a standard reply, `False` otherwise. """ if not self.is_tools_added(): return True if not isinstance(response, ChatCompletion): return True if self.model_type.support_native_tool_calling: return not response.choices[0].message.tool_calls return "</function>" not in str( response.choices[0].message.content or "" ) def _log_final_output(self, output_messages: List[BaseMessage]) -> None: r"""Log final messages or warnings about multiple responses.""" if len(output_messages) == 1: self.record_message(output_messages[0]) else: logger.warning( "Multiple messages returned in `step()`. Record " "selected message manually using `record_message()`." )
[docs] async def step_async( self, input_message: Union[BaseMessage, str], response_format: Optional[Type[BaseModel]] = None, ) -> ChatAgentResponse: r"""Performs a single step in the chat session by generating a response to the input message. This agent step can call async function calls. Args: input_message (Union[BaseMessage, str]): The input message to the agent. For BaseMessage input, its `role` field that specifies the role at backend may be either `user` or `assistant` but it will be set to `user` anyway since for the self agent any incoming message is external. For str input, the `role_name` would be `User`. response_format (Optional[Type[BaseModel]], optional): A pydantic model class that includes value types and field descriptions used to generate a structured response by LLM. This schema helps in defining the expected output format. (default: :obj:`None`) Returns: ChatAgentResponse: A struct containing the output messages, a boolean indicating whether the chat session has terminated, and information about the chat session. """ if isinstance(input_message, str): input_message = BaseMessage.make_user_message( role_name='User', content=input_message ) self.update_memory(input_message, OpenAIBackendRole.USER) tool_call_records: List[FunctionCallingRecord] = [] while True: try: openai_messages, num_tokens = self.memory.get_context() except RuntimeError as e: return self._step_token_exceed( e.args[1], tool_call_records, "max_tokens_exceeded" ) ( response, output_messages, finish_reasons, usage_dict, response_id, ) = self._step_model_response(openai_messages, num_tokens) if ( not self.is_tools_added() or not isinstance(response, ChatCompletion) or not response.choices[0].message.tool_calls ): break # Check for external tool call external_tool_request = response.choices[0].message.tool_calls[0] if external_tool_request.function.name in self.external_tool_names: # if model calls an external tool, directly return the request info = self._step_get_info( output_messages, finish_reasons, usage_dict, response_id, tool_call_records, num_tokens, external_tool_request, ) return ChatAgentResponse( msgs=output_messages, terminated=self.terminated, info=info ) # Normal function calling tool_call_records.append( await self._step_tool_call_and_update_async(response) ) if ( response_format is not None and self.model_type.support_native_tool_calling ): ( output_messages, finish_reasons, usage_dict, response_id, tool_call_record, num_tokens, ) = self._structure_output_with_function(response_format) tool_call_records.append(tool_call_record) info = self._step_get_info( output_messages, finish_reasons, usage_dict, response_id, tool_call_records, num_tokens, ) if len(output_messages) == 1: # Auto record if the output result is a single message self.record_message(output_messages[0]) else: logger.warning( "Multiple messages returned in `step()`, message won't be " "recorded automatically. Please call `record_message()` to " "record the selected message manually." ) return ChatAgentResponse( msgs=output_messages, terminated=self.terminated, info=info )
def _step_tool_call_and_update( self, response: ChatCompletion ) -> FunctionCallingRecord: r"""Processes a function call within the chat completion response, records the function call in the provided list of tool calls and updates the memory of the current agent. Args: response (ChatCompletion): The response object from the chat completion. Returns: FunctionCallingRecord: The record of calling the function. """ # Perform function calling func_assistant_msg, func_result_msg, tool_call_record = ( self._step_tool_call(response) ) # Update the messages self.update_memory(func_assistant_msg, OpenAIBackendRole.ASSISTANT) self.update_memory(func_result_msg, OpenAIBackendRole.FUNCTION) return tool_call_record async def _step_tool_call_and_update_async( self, response: ChatCompletion ) -> FunctionCallingRecord: ( func_assistant_msg, func_result_msg, func_record, ) = await self.step_tool_call_async(response) self.update_memory(func_assistant_msg, OpenAIBackendRole.ASSISTANT) self.update_memory(func_result_msg, OpenAIBackendRole.FUNCTION) return func_record def _structure_output_with_function( self, response_format: Type[BaseModel] ) -> Tuple[ List[BaseMessage], List[str], Dict[str, int], str, FunctionCallingRecord, int, ]: r"""Internal function of structuring the output of the agent based on the given output schema. Args: response_format (Type[BaseModel]): The output schema to use for structuring the output. Returns: Tuple[List[BaseMessage], List[str], Dict[str, int], str, FunctionCallingRecord, int]: A tuple containing the output messages, finish reasons, usage dictionary, response ID, function calling record, and number of tokens. """ from camel.toolkits import FunctionTool schema_json = get_pydantic_object_schema(response_format) func_str = json_to_function_code(schema_json) func_callable = func_string_to_callable(func_str) func = FunctionTool(func_callable) original_model_dict = self.model_backend.model_config_dict # Replace the original tools with the structuring function self.tool_dict = {func.get_function_name(): func} self.model_backend.model_config_dict = original_model_dict.copy() self.model_backend.model_config_dict["tools"] = [ func.get_openai_tool_schema() ] self.model_backend.model_config_dict["tool_choice"] = "required" openai_messages, num_tokens = self.memory.get_context() ( response, output_messages, finish_reasons, usage_dict, response_id, ) = self._step_model_response(openai_messages, num_tokens) if isinstance(response, ChatCompletion): tool_call_record = self._step_tool_call_and_update(response) else: raise ValueError( "Structured output is not supported for stream responses." ) for base_message_item in output_messages: base_message_item.content = json.dumps(tool_call_record.result) # Recover the original tools self.model_backend.model_config_dict = original_model_dict return ( output_messages, finish_reasons, usage_dict, response_id, tool_call_record, num_tokens, ) def _step_model_response( self, openai_messages: List[OpenAIMessage], num_tokens: int, ) -> tuple[ Union[ChatCompletion, Stream], List[BaseMessage], List[str], Dict[str, int], str, ]: r"""Internal function for agent step model response.""" response = None # Obtain the model's response for _ in range(len(self.model_backend.models)): try: response = self.model_backend.run(openai_messages) break except Exception as exc: logger.error( f"An error occurred while running model " f"{self.model_backend.model_type}, " f"index: {self.model_backend.current_model_index}", exc_info=exc, ) continue if not response: raise ModelProcessingError( "Unable to process messages: none of the provided models " "run succesfully." ) logger.info( f"Model {self.model_backend.model_type}, " f"index {self.model_backend.current_model_index}, " f"processed these messages: {openai_messages}" ) if isinstance(response, ChatCompletion): output_messages, finish_reasons, usage_dict, response_id = ( self.handle_batch_response(response) ) else: output_messages, finish_reasons, usage_dict, response_id = ( self.handle_stream_response(response, num_tokens) ) return ( response, output_messages, finish_reasons, usage_dict, response_id, ) def _step_get_info( self, output_messages: List[BaseMessage], finish_reasons: List[str], usage_dict: Dict[str, int], response_id: str, tool_calls: List[FunctionCallingRecord], num_tokens: int, external_tool_request: Optional[ChatCompletionMessageToolCall] = None, ) -> Dict[str, Any]: r"""Process the output of a chat step and gather information about the step. This method checks for termination conditions, updates the agent's state, and collects information about the chat step, including tool calls and termination reasons. Args: output_messages (List[BaseMessage]): The messages generated in this step. finish_reasons (List[str]): The reasons for finishing the generation for each message. usage_dict (Dict[str, int]): Dictionary containing token usage information. response_id (str): The ID of the response from the model. tool_calls (List[FunctionCallingRecord]): Records of function calls made during this step. num_tokens (int): The number of tokens used in this step. external_tool_request (Optional[ChatCompletionMessageToolCall]): Any external tool request made during this step. (default: :obj:`None`) Returns: Dict[str, Any]: A dictionary containing information about the chat step, including termination status, reasons, and tool call information. Note: This method iterates over all response terminators and checks if any of them signal termination. If a terminator signals termination, the agent's state is updated accordingly, and the termination reason is recorded. """ termination = [ terminator.is_terminated(output_messages) for terminator in self.response_terminators ] # Terminate the agent if any of the terminator terminates self.terminated, termination_reason = next( ( (terminated, termination_reason) for terminated, termination_reason in termination if terminated ), (False, None), ) # For now only retain the first termination reason if self.terminated and termination_reason is not None: finish_reasons = [termination_reason] * len(finish_reasons) info = self.get_info( response_id, usage_dict, finish_reasons, num_tokens, tool_calls, external_tool_request, ) return info
[docs] def handle_batch_response( self, response: ChatCompletion ) -> Tuple[List[BaseMessage], List[str], Dict[str, int], str]: r"""Process a batch response from the model and extract the necessary information. Args: response (dict): Model response. Returns: tuple: A tuple of list of output `ChatMessage`, list of finish reasons, usage dictionary, and response id. """ output_messages: List[BaseMessage] = [] for choice in response.choices: chat_message = BaseMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=dict(), content=choice.message.content or "", parsed=getattr(choice.message, 'parsed', None), ) # Process log probabilities and append to the message meta information if choice.logprobs is not None: tokens_logprobs = choice.logprobs.content if tokens_logprobs is not None: # Extract and structure logprob information logprobs_info = [ { "token": token_logprob.token, "logprob": token_logprob.logprob, "top_logprobs": [ (top_logprob.token, top_logprob.logprob) for top_logprob in token_logprob.top_logprobs ], } for token_logprob in tokens_logprobs ] # Ensure meta_dict exists before adding logprobs info if chat_message.meta_dict is None: chat_message.meta_dict = {} chat_message.meta_dict["logprobs_info"] = logprobs_info # Append the processed chat message to output output_messages.append(chat_message) finish_reasons = [ str(choice.finish_reason) for choice in response.choices ] usage = ( self._safe_model_dump(response.usage) if response.usage is not None else {} ) return ( output_messages, finish_reasons, usage, response.id, )
def _safe_model_dump(self, obj) -> dict: r"""Safely dump a Pydantic model to a dictionary. This method attempts to use the `model_dump` method if available, otherwise it falls back to the `dict` method. Args: obj: The Pydantic model instance to be dumped. Returns: dict: A dictionary representation of the Pydantic model. """ # Check if the `model_dump` method exists (Pydantic v2) if hasattr(obj, 'model_dump'): return obj.model_dump() # Fallback to `dict()` method (Pydantic v1) elif hasattr(obj, 'dict'): return obj.dict() else: raise TypeError("The object is not a Pydantic model")
[docs] def handle_stream_response( self, response: Stream[ChatCompletionChunk], prompt_tokens: int, ) -> Tuple[List[BaseMessage], List[str], Dict[str, int], str]: r"""Process a stream response from the model and extract the necessary information. Args: response (dict): Model response. prompt_tokens (int): Number of input prompt tokens. Returns: tuple: A tuple of list of output `ChatMessage`, list of finish reasons, usage dictionary, and response id. """ content_dict: defaultdict = defaultdict(lambda: "") finish_reasons_dict: defaultdict = defaultdict(lambda: "") output_messages: List[BaseMessage] = [] response_id: str = "" # All choices in one response share one role for chunk in response: response_id = chunk.id for choice in chunk.choices: index = choice.index delta = choice.delta if delta.content is not None: # When response has not been stopped # Notice that only the first chunk_dict has the "role" content_dict[index] += delta.content if choice.finish_reason: finish_reasons_dict[index] = choice.finish_reason chat_message = BaseMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=dict(), content=content_dict[index], ) output_messages.append(chat_message) finish_reasons = [ finish_reasons_dict[i] for i in range(len(finish_reasons_dict)) ] usage_dict = self.get_usage_dict(output_messages, prompt_tokens) return output_messages, finish_reasons, usage_dict, response_id
def _step_token_exceed( self, num_tokens: int, tool_calls: List[FunctionCallingRecord], termination_reason: str, ) -> ChatAgentResponse: r"""Return trivial response containing number of tokens and information of called functions when the number of tokens exceeds. Args: num_tokens (int): Number of tokens in the messages. tool_calls (List[FunctionCallingRecord]): List of information objects of functions called in the current step. termination_reason (str): String of termination reason. Returns: ChatAgentResponse: The struct containing trivial outputs and information about token number and called functions. """ self.terminated = True output_messages: List[BaseMessage] = [] info = self.get_info( None, None, [termination_reason], num_tokens, tool_calls, ) return ChatAgentResponse( msgs=output_messages, terminated=self.terminated, info=info, ) def _step_tool_call( self, response: ChatCompletion, ) -> Tuple[ FunctionCallingMessage, FunctionCallingMessage, FunctionCallingRecord ]: r"""Execute the function with arguments following the model's response. Args: response (Dict[str, Any]): The response obtained by calling the model. Returns: tuple: A tuple consisting of two obj:`FunctionCallingMessage`, one about the arguments and the other about the execution result, and a struct for logging information about this function call. """ choice = response.choices[0] if choice.message.tool_calls is None: raise RuntimeError("Tool call is None") func_name = choice.message.tool_calls[0].function.name arguments_str = choice.message.tool_calls[0].function.arguments args = self._safe_json_loads(arguments_str) tool = self.tool_dict[func_name] result = tool(**args) assist_msg = FunctionCallingMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=None, content="", func_name=func_name, args=args, ) func_msg = FunctionCallingMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=None, content="", func_name=func_name, result=result, ) # Record information about this function call func_record = FunctionCallingRecord( func_name=func_name, args=args, result=result ) return assist_msg, func_msg, func_record def _safe_json_loads(self, arguments_str): # Replace Python types with their JSON equivalents arguments_str = arguments_str.replace("None", "null") arguments_str = arguments_str.replace("True", "true") arguments_str = arguments_str.replace("False", "false") # Attempt to parse the corrected string try: return json.loads(arguments_str) except json.JSONDecodeError as e: raise ValueError(f"Invalid JSON format: {e}")
[docs] async def step_tool_call_async( self, response: ChatCompletion, ) -> Tuple[ FunctionCallingMessage, FunctionCallingMessage, FunctionCallingRecord ]: r"""Execute the async function with arguments following the model's response. Args: response (Dict[str, Any]): The response obtained by calling the model. Returns: tuple: A tuple consisting of two obj:`FunctionCallingMessage`, one about the arguments and the other about the execution result, and a struct for logging information about this function call. """ # Note that when function calling is enabled, `n` is set to 1. choice = response.choices[0] if choice.message.tool_calls is None: raise RuntimeError("Tool call is None") func_name = choice.message.tool_calls[0].function.name args = json.loads(choice.message.tool_calls[0].function.arguments) tool = self.tool_dict[func_name] result = await tool(**args) assist_msg = FunctionCallingMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=None, content="", func_name=func_name, args=args, ) func_msg = FunctionCallingMessage( role_name=self.role_name, role_type=self.role_type, meta_dict=None, content="", func_name=func_name, result=result, ) # Record information about this function call func_record = FunctionCallingRecord( func_name=func_name, args=args, result=result ) return assist_msg, func_msg, func_record
[docs] def get_usage_dict( self, output_messages: List[BaseMessage], prompt_tokens: int ) -> Dict[str, int]: r"""Get usage dictionary when using the stream mode. Args: output_messages (list): List of output messages. prompt_tokens (int): Number of input prompt tokens. Returns: dict: Usage dictionary. """ encoding = get_model_encoding(self.model_type.value_for_tiktoken) completion_tokens = 0 for message in output_messages: completion_tokens += len(encoding.encode(message.content)) usage_dict = dict( completion_tokens=completion_tokens, prompt_tokens=prompt_tokens, total_tokens=completion_tokens + prompt_tokens, ) return usage_dict
[docs] def add_model_scheduling_strategy(self, name: str, strategy_fn: Callable): r"""Add a scheduling strategy method provided by user to ModelManger. Args: name (str): The name of the strategy. strategy_fn (Callable): The scheduling strategy function. """ self.model_backend.add_strategy(name, strategy_fn)
def __repr__(self) -> str: r"""Returns a string representation of the :obj:`ChatAgent`. Returns: str: The string representation of the :obj:`ChatAgent`. """ return ( f"ChatAgent({self.role_name}, {self.role_type}, {self.model_type})" )