MistralModel

class MistralModel(BaseModelBackend):

Mistral API in a unified BaseModelBackend interface.

Parameters:

  • model_type (Union[ModelType, str]): Model for which a backend is created, one of MISTRAL_* series.
  • model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:Mistral.chat.complete().
  • If: obj:None, :obj:MistralConfig().as_dict() will be used. (default: :obj:None)
  • api_key (Optional[str], optional): The API key for authenticating with the mistral service. (default: :obj:None)
  • url (Optional[str], optional): The url to the mistral service. (default: :obj:None)
  • token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:OpenAITokenCounter will be used. (default: :obj:None)
  • timeout (Optional[float], optional): The timeout value in seconds for API calls. If not provided, will fall back to the MODEL_TIMEOUT environment variable or default to 180 seconds. (default: :obj:None)

init

def __init__(
    self,
    model_type: Union[ModelType, str],
    model_config_dict: Optional[Dict[str, Any]] = None,
    api_key: Optional[str] = None,
    url: Optional[str] = None,
    token_counter: Optional[BaseTokenCounter] = None,
    timeout: Optional[float] = None
):

_to_openai_response

def _to_openai_response(self, response: 'ChatCompletionResponse'):

_to_mistral_chatmessage

def _to_mistral_chatmessage(self, messages: List[OpenAIMessage]):

token_counter

def token_counter(self):

Returns:

BaseTokenCounter: The token counter following the model’s tokenization style.

_run

def _run(
    self,
    messages: List[OpenAIMessage],
    response_format: Optional[Type[BaseModel]] = None,
    tools: Optional[List[Dict[str, Any]]] = None
):

Runs inference of Mistral chat completion.

Parameters:

  • messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format.
  • response_format (Optional[Type[BaseModel]]): The format of the response for this query.
  • tools (Optional[List[Dict[str, Any]]]): The tools to use for this query.

Returns:

ChatCompletion: The response from the model.

_prepare_request

def _prepare_request(
    self,
    messages: List[OpenAIMessage],
    response_format: Optional[Type[BaseModel]] = None,
    tools: Optional[List[Dict[str, Any]]] = None
):

check_model_config

def check_model_config(self):

stream

def stream(self):

Returns:

bool: Whether the model is in stream mode.