Source code for camel.models.ollama_model

# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
import subprocess
from typing import Any, Dict, List, Optional, Type, Union

from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
from pydantic import BaseModel

from camel.configs import OLLAMA_API_PARAMS, OllamaConfig
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.models._utils import try_modify_message_with_format
from camel.types import (
    ChatCompletion,
    ChatCompletionChunk,
    ModelType,
)
from camel.utils import BaseTokenCounter, OpenAITokenCounter


[docs] class OllamaModel(BaseModelBackend): r"""Ollama service interface. Args: model_type (Union[ModelType, str]): Model for which a backend is created. model_config_dict (Optional[Dict[str, Any]], optional): A dictionary that will be fed into:obj:`openai.ChatCompletion.create()`. If:obj:`None`, :obj:`OllamaConfig().as_dict()` will be used. (default: :obj:`None`) api_key (Optional[str], optional): The API key for authenticating with the model service. Ollama doesn't need API key, it would be ignored if set. (default: :obj:`None`) url (Optional[str], optional): The url to the model service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter( ModelType.GPT_4O_MINI)` will be used. (default: :obj:`None`) References: https://github.com/ollama/ollama/blob/main/docs/openai.md """ def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: if model_config_dict is None: model_config_dict = OllamaConfig().as_dict() url = url or os.environ.get("OLLAMA_BASE_URL") super().__init__( model_type, model_config_dict, api_key, url, token_counter ) if not self._url: self._start_server() # Use OpenAI client as interface call Ollama self._client = OpenAI( timeout=180, max_retries=3, api_key="Set-but-ignored", # required but ignored base_url=self._url, ) self._async_client = AsyncOpenAI( timeout=180, max_retries=3, api_key="Set-but-ignored", # required but ignored base_url=self._url, ) def _start_server(self) -> None: r"""Starts the Ollama server in a subprocess.""" try: subprocess.Popen( ["ollama", "server", "--port", "11434"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) self._url = "http://localhost:11434/v1" print( f"Ollama server started on {self._url} " f"for {self.model_type} model." ) except Exception as e: print(f"Failed to start Ollama server: {e}.") @property def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ if not self._token_counter: self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI) return self._token_counter
[docs] def check_model_config(self): r"""Check whether the model configuration contains any unexpected arguments to Ollama API. Raises: ValueError: If the model configuration dictionary contains any unexpected arguments to OpenAI API. """ for param in self.model_config_dict: if param not in OLLAMA_API_PARAMS: raise ValueError( f"Unexpected argument `{param}` is " "input into Ollama model backend." )
def _run( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Runs inference of Ollama chat completion. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. response_format (Optional[Type[BaseModel]]): The format of the response. tools (Optional[List[Dict[str, Any]]]): The schema of the tools to use for the request. Returns: Union[ChatCompletion, Stream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `Stream[ChatCompletionChunk]` in the stream mode. """ response_format = response_format or self.model_config_dict.get( "response_format", None ) # For Ollama, the tool calling will be broken with response_format if response_format and not tools: return self._request_parse(messages, response_format, tools) else: return self._request_chat_completion( messages, response_format, tools ) async def _arun( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: r"""Runs inference of Ollama chat completion in async mode. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. response_format (Optional[Type[BaseModel]]): The format of the response. tools (Optional[List[Dict[str, Any]]]): The schema of the tools to use for the request. Returns: Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `AsyncStream[ChatCompletionChunk]` in the stream mode. """ response_format = response_format or self.model_config_dict.get( "response_format", None ) if response_format: return await self._arequest_parse(messages, response_format, tools) else: return await self._arequest_chat_completion( messages, response_format, tools ) def _prepare_chat_completion_config( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Dict[str, Any]: request_config = self.model_config_dict.copy() if tools: request_config["tools"] = tools if response_format: try_modify_message_with_format(messages[-1], response_format) request_config["response_format"] = {"type": "json_object"} return request_config def _request_chat_completion( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: request_config = self._prepare_chat_completion_config( messages, response_format, tools ) return self._client.chat.completions.create( messages=messages, model=self.model_type, **request_config, ) async def _arequest_chat_completion( self, messages: List[OpenAIMessage], response_format: Optional[Type[BaseModel]] = None, tools: Optional[List[Dict[str, Any]]] = None, ) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]: request_config = self._prepare_chat_completion_config( messages, response_format, tools ) return await self._async_client.chat.completions.create( messages=messages, model=self.model_type, **request_config, ) def _request_parse( self, messages: List[OpenAIMessage], response_format: Type[BaseModel], tools: Optional[List[Dict[str, Any]]] = None, ) -> ChatCompletion: request_config = self.model_config_dict.copy() request_config["response_format"] = response_format request_config.pop("stream", None) if tools is not None: request_config["tools"] = tools return self._client.beta.chat.completions.parse( messages=messages, model=self.model_type, **request_config, ) async def _arequest_parse( self, messages: List[OpenAIMessage], response_format: Type[BaseModel], tools: Optional[List[Dict[str, Any]]] = None, ) -> ChatCompletion: request_config = self.model_config_dict.copy() request_config["response_format"] = response_format request_config.pop("stream", None) if tools is not None: request_config["tools"] = tools return await self._async_client.beta.chat.completions.parse( messages=messages, model=self.model_type, **request_config, ) @property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return self.model_config_dict.get('stream', False)