Source code for camel.models.reward.nemotron_model
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import os
from typing import Dict, List, Optional, Union
from openai import OpenAI
from camel.models.reward import BaseRewardModel
from camel.types import ChatCompletion, ModelType
from camel.utils import api_keys_required
[docs]
class NemotronRewardModel(BaseRewardModel):
r"""Reward model based on the Nemotron model with OpenAI compatibility.
Args:
model_type (Union[ModelType, str]): Model for which a backend is
created.
api_key (Optional[str], optional): The API key for authenticating
with the model service. (default: :obj:`None`)
url (Optional[str], optional): The url to the model service.
Note:
The Nemotron model does not support model config.
"""
def __init__(
self,
model_type: Union[ModelType, str],
api_key: Optional[str] = None,
url: Optional[str] = None,
) -> None:
url = url or os.environ.get(
"NVIDIA_API_BASE_URL", "https://integrate.api.nvidia.com/v1"
)
api_key = api_key or os.environ.get("NVIDIA_API_KEY")
super().__init__(model_type, api_key, url)
self._client = OpenAI(
timeout=180,
max_retries=3,
base_url=self.url,
api_key=self.api_key,
)
[docs]
@api_keys_required(
[
(None, "NVIDIA_API_KEY"),
]
)
def evaluate(self, messages: List[Dict[str, str]]) -> Dict[str, float]:
r"""Evaluate the messages using the Nemotron model.
Args:
messages (List[Dict[str, str]]): A list of messages where each
message is a dictionary format.
Returns:
Dict[str, float]: A dictionary mapping score types to their
values.
"""
response = self._client.chat.completions.create(
messages=messages, # type: ignore[arg-type]
model=self.model_type,
)
scores = self._parse_scores(response)
return scores
[docs]
def get_scores_types(self) -> List[str]:
r"""Get the list of score types that the reward model can return.
Returns:
List[str]: A list of score types that the reward model can return.
"""
return [
"helpfulness",
"correctness",
"coherence",
"complexity",
"verbosity",
]
def _parse_scores(self, response: ChatCompletion) -> Dict[str, float]:
r"""Parse the scores from the response.
Args:
response (ChatCompletion): A ChatCompletion object with the scores.
Returns:
Dict[str, float]: A dictionary mapping score types to their values.
"""
try:
choices = response.choices
logprobs = (
choices[0].logprobs.content
if choices and choices[0].logprobs
else None
)
scores = (
{entry.token: entry.logprob for entry in logprobs if entry}
if logprobs
else {}
)
return scores
except Exception as e:
raise ValueError(f"Failed to parse scores: {e}")