# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
import json
import os
import time
import uuid
from typing import Any, Dict, List, Optional, Type, Union
import httpx
from openai import AsyncOpenAI, AsyncStream, OpenAI, Stream
from pydantic import BaseModel
from camel.configs import (
SAMBA_CLOUD_API_PARAMS,
SAMBA_VERSE_API_PARAMS,
SambaCloudAPIConfig,
)
from camel.messages import OpenAIMessage
from camel.models import BaseModelBackend
from camel.types import (
ChatCompletion,
ChatCompletionChunk,
CompletionUsage,
ModelType,
)
from camel.utils import (
BaseTokenCounter,
OpenAITokenCounter,
api_keys_required,
)
try:
if os.getenv("AGENTOPS_API_KEY") is not None:
from agentops import LLMEvent, record
else:
raise ImportError
except (ImportError, AttributeError):
LLMEvent = None
[docs]
class SambaModel(BaseModelBackend):
r"""SambaNova service interface.
Args:
model_type (Union[ModelType, str]): Model for which a SambaNova backend
is created. Supported models via SambaNova Cloud:
`https://community.sambanova.ai/t/supported-models/193`.
Supported models via SambaVerse API is listed in
`https://sambaverse.sambanova.ai/models`.
model_config_dict (Optional[Dict[str, Any]], optional): A dictionary
that will be fed into:obj:`openai.ChatCompletion.create()`. If
:obj:`None`, :obj:`SambaCloudAPIConfig().as_dict()` will be used.
(default: :obj:`None`)
api_key (Optional[str], optional): The API key for authenticating
with the SambaNova service. (default: :obj:`None`)
url (Optional[str], optional): The url to the SambaNova service.
Current support SambaVerse API:
:obj:`"https://sambaverse.sambanova.ai/api/predict"` and
SambaNova Cloud:
:obj:`"https://api.sambanova.ai/v1"` (default: :obj:`https://api.
sambanova.ai/v1`)
token_counter (Optional[BaseTokenCounter], optional): Token counter to
use for the model. If not provided, :obj:`OpenAITokenCounter(
ModelType.GPT_4O_MINI)` will be used.
"""
@api_keys_required(
[
("api_key", 'SAMBA_API_KEY'),
]
)
def __init__(
self,
model_type: Union[ModelType, str],
model_config_dict: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
url: Optional[str] = None,
token_counter: Optional[BaseTokenCounter] = None,
) -> None:
if model_config_dict is None:
model_config_dict = SambaCloudAPIConfig().as_dict()
api_key = api_key or os.environ.get("SAMBA_API_KEY")
url = url or os.environ.get(
"SAMBA_API_BASE_URL",
"https://api.sambanova.ai/v1",
)
super().__init__(
model_type, model_config_dict, api_key, url, token_counter
)
if self._url == "https://api.sambanova.ai/v1":
self._client = OpenAI(
timeout=180,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
self._async_client = AsyncOpenAI(
timeout=180,
max_retries=3,
base_url=self._url,
api_key=self._api_key,
)
@property
def token_counter(self) -> BaseTokenCounter:
r"""Initialize the token counter for the model backend.
Returns:
BaseTokenCounter: The token counter following the model's
tokenization style.
"""
if not self._token_counter:
self._token_counter = OpenAITokenCounter(ModelType.GPT_4O_MINI)
return self._token_counter
[docs]
def check_model_config(self):
r"""Check whether the model configuration contains any
unexpected arguments to SambaNova API.
Raises:
ValueError: If the model configuration dictionary contains any
unexpected arguments to SambaNova API.
"""
if self._url == "https://sambaverse.sambanova.ai/api/predict":
for param in self.model_config_dict:
if param not in SAMBA_VERSE_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into SambaVerse API."
)
elif self._url == "https://api.sambanova.ai/v1":
for param in self.model_config_dict:
if param not in SAMBA_CLOUD_API_PARAMS:
raise ValueError(
f"Unexpected argument `{param}` is "
"input into SambaCloud API."
)
else:
raise ValueError(
f"{self._url} is not supported, please check the url to the"
" SambaNova service"
)
async def _arun( # type: ignore[misc]
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
r"""Runs SambaNova's service.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
Union[ChatCompletion, AsyncStream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`AsyncStream[ChatCompletionChunk]` in the stream mode.
"""
if "tools" in self.model_config_dict:
del self.model_config_dict["tools"]
if self.model_config_dict.get("stream") is True:
return await self._arun_streaming(messages)
else:
return await self._arun_non_streaming(messages)
def _run( # type: ignore[misc]
self,
messages: List[OpenAIMessage],
response_format: Optional[Type[BaseModel]] = None,
tools: Optional[List[Dict[str, Any]]] = None,
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]:
r"""Runs SambaNova's service.
Args:
messages (List[OpenAIMessage]): Message list with the chat history
in OpenAI API format.
Returns:
Union[ChatCompletion, Stream[ChatCompletionChunk]]:
`ChatCompletion` in the non-stream mode, or
`Stream[ChatCompletionChunk]` in the stream mode.
"""
if "tools" in self.model_config_dict:
del self.model_config_dict["tools"]
if self.model_config_dict.get("stream") is True:
return self._run_streaming(messages)
else:
return self._run_non_streaming(messages)
def _run_streaming(
self, messages: List[OpenAIMessage]
) -> Stream[ChatCompletionChunk]:
r"""Handles streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
chat history in OpenAI API format.
Returns:
Stream[ChatCompletionChunk]: A generator yielding
`ChatCompletionChunk` objects as they are received from the
API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the API doesn't support stream mode.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
elif self._url == "https://sambaverse.sambanova.ai/api/predict":
raise ValueError(
"https://sambaverse.sambanova.ai/api/predict doesn't support"
" stream mode"
)
raise RuntimeError(f"Unknown URL: {self._url}")
def _run_non_streaming(
self, messages: List[OpenAIMessage]
) -> ChatCompletion:
r"""Handles non-streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
message in OpenAI API format.
Returns:
ChatCompletion: A `ChatCompletion` object containing the complete
response from the API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the JSON response cannot be decoded or is missing
expected data.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = self._client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
# Handle SambaNova's Sambaverse API
else:
headers = {
"Content-Type": "application/json",
"key": str(self._api_key),
"modelName": self.model_type,
}
data = {
"instance": json.dumps(
{
"conversation_id": str(uuid.uuid4()),
"messages": messages,
}
),
"params": {
"do_sample": {"type": "bool", "value": "true"},
"max_tokens_to_generate": {
"type": "int",
"value": str(self.model_config_dict.get("max_tokens")),
},
"process_prompt": {"type": "bool", "value": "true"},
"repetition_penalty": {
"type": "float",
"value": str(
self.model_config_dict.get("repetition_penalty")
),
},
"return_token_count_only": {
"type": "bool",
"value": "false",
},
"select_expert": {
"type": "str",
"value": self.model_type.split('/')[1],
},
"stop_sequences": {
"type": "str",
"value": self.model_config_dict.get("stop_sequences"),
},
"temperature": {
"type": "float",
"value": str(
self.model_config_dict.get("temperature")
),
},
"top_k": {
"type": "int",
"value": str(self.model_config_dict.get("top_k")),
},
"top_p": {
"type": "float",
"value": str(self.model_config_dict.get("top_p")),
},
},
}
try:
# Send the request and handle the response
with httpx.Client() as client:
response = client.post(
self._url, # type: ignore[arg-type]
headers=headers,
json=data,
)
raw_text = response.text
# Split the string into two dictionaries
dicts = raw_text.split('}\n{')
# Keep only the last dictionary
last_dict = '{' + dicts[-1]
# Parse the dictionary
last_dict = json.loads(last_dict)
return self._sambaverse_to_openai_response(last_dict) # type: ignore[arg-type]
except httpx.HTTPStatusError:
raise RuntimeError(f"HTTP request failed: {raw_text}")
def _sambaverse_to_openai_response(
self, samba_response: Dict[str, Any]
) -> ChatCompletion:
r"""Converts SambaVerse API response into an OpenAI-compatible
response.
Args:
samba_response (Dict[str, Any]): A dictionary representing
responses from the SambaVerse API.
Returns:
ChatCompletion: A `ChatCompletion` object constructed from the
aggregated response data.
"""
choices = [
dict(
index=0,
message={
"role": 'assistant',
"content": samba_response['result']['responses'][0][
'completion'
],
},
finish_reason=samba_response['result']['responses'][0][
'stop_reason'
],
)
]
obj = ChatCompletion.construct(
id=None,
choices=choices,
created=int(time.time()),
model=self.model_type,
object="chat.completion",
# SambaVerse API only provide `total_tokens`
usage=CompletionUsage(
completion_tokens=0,
prompt_tokens=0,
total_tokens=int(
samba_response['result']['responses'][0][
'total_tokens_count'
]
),
),
)
return obj
@property
def stream(self) -> bool:
r"""Returns whether the model is in stream mode, which sends partial
results each time.
Returns:
bool: Whether the model is in stream mode.
"""
return self.model_config_dict.get('stream', False)
async def _arun_streaming(
self, messages: List[OpenAIMessage]
) -> AsyncStream[ChatCompletionChunk]:
r"""Handles streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
chat history in OpenAI API format.
Returns:
AsyncStream[ChatCompletionChunk]: A generator yielding
`ChatCompletionChunk` objects as they are received from the
API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the API doesn't support stream mode.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = await self._async_client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
elif self._url == "https://sambaverse.sambanova.ai/api/predict":
raise ValueError(
"https://sambaverse.sambanova.ai/api/predict doesn't support"
" stream mode"
)
raise RuntimeError(f"Unknown URL: {self._url}")
async def _arun_non_streaming(
self, messages: List[OpenAIMessage]
) -> ChatCompletion:
r"""Handles non-streaming inference with SambaNova's API.
Args:
messages (List[OpenAIMessage]): A list of messages representing the
message in OpenAI API format.
Returns:
ChatCompletion: A `ChatCompletion` object containing the complete
response from the API.
Raises:
RuntimeError: If the HTTP request fails.
ValueError: If the JSON response cannot be decoded or is missing
expected data.
"""
# Handle SambaNova's Cloud API
if self._url == "https://api.sambanova.ai/v1":
response = await self._async_client.chat.completions.create(
messages=messages,
model=self.model_type,
**self.model_config_dict,
)
# Add AgentOps LLM Event tracking
if LLMEvent:
llm_event = LLMEvent(
thread_id=response.id,
prompt=" ".join(
[message.get("content") for message in messages] # type: ignore[misc]
),
prompt_tokens=response.usage.prompt_tokens, # type: ignore[union-attr]
completion=response.choices[0].message.content,
completion_tokens=response.usage.completion_tokens, # type: ignore[union-attr]
model=self.model_type,
)
record(llm_event)
return response
# Handle SambaNova's Sambaverse API
else:
headers = {
"Content-Type": "application/json",
"key": str(self._api_key),
"modelName": self.model_type,
}
data = {
"instance": json.dumps(
{
"conversation_id": str(uuid.uuid4()),
"messages": messages,
}
),
"params": {
"do_sample": {"type": "bool", "value": "true"},
"max_tokens_to_generate": {
"type": "int",
"value": str(self.model_config_dict.get("max_tokens")),
},
"process_prompt": {"type": "bool", "value": "true"},
"repetition_penalty": {
"type": "float",
"value": str(
self.model_config_dict.get("repetition_penalty")
),
},
"return_token_count_only": {
"type": "bool",
"value": "false",
},
"select_expert": {
"type": "str",
"value": self.model_type.split("/")[1],
},
"stop_sequences": {
"type": "str",
"value": self.model_config_dict.get("stop_sequences"),
},
"temperature": {
"type": "float",
"value": str(
self.model_config_dict.get("temperature")
),
},
"top_k": {
"type": "int",
"value": str(self.model_config_dict.get("top_k")),
},
"top_p": {
"type": "float",
"value": str(self.model_config_dict.get("top_p")),
},
},
}
try:
# Send the request and handle the response
with httpx.Client() as client:
response = client.post(
self._url, # type: ignore[arg-type]
headers=headers,
json=data,
)
raw_text = response.text
# Split the string into two dictionaries
dicts = raw_text.split("}\n{")
# Keep only the last dictionary
last_dict = "{" + dicts[-1]
# Parse the dictionary
last_dict = json.loads(last_dict)
return self._sambaverse_to_openai_response(last_dict) # type: ignore[arg-type]
except httpx.HTTPStatusError:
raise RuntimeError(f"HTTP request failed: {raw_text}")